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Abstract—Image acquisition in low-light environments is funda-
mentally challenging due to the photon-limited nature of the scene,
which results in severe noise and incomplete color information.
Imaging sensors operating under such conditions require robust
post-processing to recover visually coherent, full-color images. In
these conditions, the photon arrival process can be modeled as
a Poisson distribution, which introduces noise that complicates
image reconstruction. Furthermore, the use of a color filter array
leads to missing color information at each pixel, which exacerbates
the challenge. As a result, denoising and demosaicing become
ill-posed and interdependent tasks. We propose a self-supervised
method that jointly addresses denoising and demosaicing under
low-light conditions without requiring clean reference images.
Our approach achieves a PSNR higher by 2.0 dB compared to
best state-of-the-art methods at gain of 20 and is close to the
supervised method.

Index Terms—Self-Supervised Learning, Image Denoising,
Image Demosaicing, Low-Light, Poisson Noise

I. INTRODUCTION

In digital photography, low-light environments pose a signif-
icant challenge due to the limited number of photons reaching
the sensor. This results in image degradation characterized
by high levels of noise as many pixels do not accumulate
enough light to produce a reliable signal. The random nature
of photon arrival under these conditions is commonly modeled
as a Poisson process. As a result, an essential post-processing
step known as denoising [1] is required to suppress noise and
recover a visually coherent and perceptually accurate image.

Recent advancements in sensor design have introduced
Quanta Image Sensors (QIS) as a promising alternative
for image acquisition in extremely low-light environments,
where traditional Complementary Metal-Oxide-Semiconductor
(CMOS) sensors often fail. Unlike CMOS sensors, which
integrate charge over time and amplify analog signals, QIS
operates at the single-photon level using jots, ultrasmall pixels
that produce a binary output indicating the presence or absence
of photon during a brief exposure [2, 3]. This design reduces
readout noise and dark current, enhancing the signal-to-noise
ratio in low-light conditions [2, 4].

In addition to the challenges introduced by low-light condi-
tions, QIS sensors, employ a Color Filter Array (CFA), typically
arranged in a Bayer pattern [5]. This pattern assigns a specific
color filter (red, green, or blue) to each jot in a mosaic layout,
resulting in an incomplete color image where two-thirds of the
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color information is missing. Consequently, reconstructing a
full-color image requires an additional processing step known
as demosaicing [5, 6].

Denoising and demosaicing are fundamental to reconstruct-
ing the captured images and can be solved with optimization
algorithms and deep learning techniques consisting of training
deep neural networks to solve complex tasks [7]. The most
popular of these methods are supervised learning, which
consists in using real images to learn a deep model. However,
obtaining a ground truth RGB image under low-light conditions
is extremely challenging, since in real scenes it is very
difficult to acquire a noise-free raw image with accurate
color information [8]. In this case, we can use self-supervised
learning techniques, consisting of solving the task without
labeled data entries [9] or ground truth.

Denoising has been widely studied within the context of
self-supervised learning techniques, e.g., Noise2Noise, which
trains models on pairs of noisy images [10]; Noise2Void,
which predicts missing pixels from their surroundings [11];
Recorrupted2Recorrupted, which leverages multiple corruptions
of the same image to train denoising models without clean
targets [12]; Generalized Recorrupted2Recorrupted (GR2R),
which extends this idea to a broader range of noise models and
tasks [13]; and SURE-based methods, which estimate denoising
risk directly from noisy observations [14]. Notably, only the
last two methods have addressed a broader range of noise
types, including Poisson noise, which is particularly relevant to
low-light imaging, and their ability to model signal-dependent
noise makes them especially important for our study.

In parallel, solve demosaicing has been approached through
a variety of techniques, including classical interpolation-based
methods such as bilinear and edge-directed interpolation [15];
Joint Demosaicing and Denoising with Self-Guidance, which
leverages the higher sampling rate of the green channel to guide
the reconstruction of missing color values in a self-supervised
manner [16]; JDD-DoubleDIP, a training-free approach that
utilizes double deep image priors to perform joint demosaicing
and denoising directly on a single RAW image [17]; and
Equivariant Imaging (EI), which exploits inherent symmetries
in natural images to learn from compressed measurements
without requiring ground truth data [18].

Jointly addressing the challenges of demosaicing and de-
noising is inherently difficult, as both are ill-posed problems
that strongly interact with each other. Noise in the sensor data
can significantly degrade the accuracy of color interpolation,
while poor interpolation may in turn amplify or misrepresent
the noise [19]. Tackling these tasks separately often leads to
error accumulation, yet solving them together requires models
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Figure 1: Low-light Image Reconstruction Pipeline: Illustration of a DnCNN-based model designed for low-light Bayer
image reconstruction. A photon-limited scene is captured by a camera with a CFA, producing a noisy Bayer image. From this
raw sensor output y, we generate two noisy observations y1 (Eq. 4) and y2 (Eq. 5). Reconstructions are produced from y1,
while y2 is used for training the model. Specifically, Tgx̂ corresponds to passing y1 through the network fθ and then applying
a rotational transformation Tg. Our method jointly removes noise and reconstructs the missing color information, ultimately
generating a clean, full-color image.

that can reliably distinguish between true image structures and
random perturbations, a particularly demanding task in areas
with fine textures or sharp edges [19].

We propose a self-supervised approach that resolves missing
pixel information using the EI framework with rotational
transformations, which allow recovering lost pixel intensity
values by repositioning pixels within the image. Simultaneously,
we eliminate noise associated with measurements through the
GR2R strategy, where multiple re-corruptions enable the recon-
struction of a denoised image. Both processes operate without
requiring ground truth data, making the method particularly
efficient for low-light photography. The results show that our
approach maintains stable reconstruction quality across a range
of noise levels and demonstrates a clear advantage in high-noise
scenarios, where traditional self-supervised techniques tend to
degrade more significantly. This suggests that the combination
of rotational transformations and re-corruption mechanisms
provides a robust framework for image restoration under low-
light conditions.

II. LOW-LIGHT RGB IMAGE MODEL

The data captured by the QIS sensor is governed by two key
elements: the use of a Bayer CFA, which assigns a specific
color channel (red, green, or blue) to each pixel, and the discrete
arrival of photons at each site during the exposure interval. As
illustrated in Figure 2, each pixel accumulates photon events
according to a Poisson process, depending on its associated
color filter. In this way, the sensor generates three separate,
sparse color planes, which are then combined into a single raw
Bayer image. We model the image formation process under
low-light conditions and Bayer CFA sampling as follows:

z ∼ P(γ ·Hx), (1)

where x ∈ R3n×1 is the real scene, represented as a vector
containing the true underlying color information of the image
before any sensor-related processing takes place, H ∈ Rn×3n is

a sampling matrix that models the effect of the color filter array
by selecting a single color channel at each pixel location, γ is
the gain factor of the sensor, and z ∈ Rn×1 is our measurement
that follows a Poisson process due to the nature of the capture
which is represented by P .

Figure 2: QIS Image Acquisition: Illustration of the image
formation process in a QIS with a Bayer CFA. During the expo-
sure time, photons are detected at each jot following a Poisson
process. Each jot captures a single color component (red, green,
or blue), and the acquired data forms a Bayer-patterned image
that serves as input for subsequent demosaicing.

III. LOW-LIGHT RGB IMAGE DEMOSAICING ALGORITHM

In QIS image restoration, the processes of denoising and
demosaicing are addressed jointly to enhance the final image
quality. The GR2R approach is used to suppress Poisson noise,
which is characteristic of images captured under low-light
conditions. This method relies on a self-supervised learning
framework that allows the model to be trained using only noisy
observations, without requiring clean reference images. The
loss function used in GR2R is defined as:

LGR2R(y; θ) := ∥Hfθ(y1)− y2∥22 , (2)

where fθ denotes the neural network to be trained, H is the
acquisition operator, and y1, y2 are two noisy observations
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generated from the same base image z, using a statistical noise
model.

In our case, since the images are captured under low-light
conditions, a Poisson noise model is adopted to reflect the
nature of the degradation. According to the model in Eq. 1,
the observed image can be expressed as

y = z/γ, (3)

The division by γ compensates for the variations in photon
arrival rates at each pixel, normalizing the observed image
in relation to the true image. From this measurement y, the
two noisy observations y1 and y2 required for self-supervised
training are generated as follows:

y1 =
y − ω/γ

1− α
, ω ∼ Bin(z, α), (4)

where Bin(z, α) denotes a sampling of a binomial distribution
with probability α on measurements without normalization.

y2 =
1

α
y − 1− α

α
y1. (5)

These expressions generate two noisy versions of the
same normalized measurement y, each containing independent
realizations of Poisson noise. This enables the model to
learn how to predict one noisy observation from another, by
leveraging their shared underlying structure. During training,
the model is optimized so that the prediction fθ(y1), once
passed through the acquisition operator H, approximates y2,
enabling image restoration to be learned directly from noisy
data without external supervision.

The EI method is used to reconstruct missing chromatic
information through a self-supervised approach that exploits
symmetries present in image data, such as rotations or transla-
tions. The key idea behind EI is that natural images exhibit
structural invariances that should be preserved during the
restoration process. The loss function used in this method
is defined as:

LEI(y; θ) := ∥fθ(HTgx̂)−Tgx̂∥22 (6)

where x̂ = fθ(y1), and Tg is a transformation from a
symmetry group (e.g., a rotation or translation) applied to
both the reconstructed and target images. This formulation
encourages the model to preserve the inherent symmetries of
natural images during reconstruction, ultimately improving the
accuracy and consistency of the demosaicing process.

The combination of these two techniques is expressed by
a composite loss function, which includes the loss associated
with noise removal and the loss related to demosaicing. The
model parameters θ are estimated by solving an optimization
problem that minimizes the GR2R loss (LGR2R) together with
the EI loss (LEI) as:

θ̂ ∈ arg min
θ
LGR2R(y; θ) + λLEI(y; θ). (7)

Algorithm 1 Image Restoration Pseudo-code
# Input: clean image dataset x, Bayer mask H, network fθ
# transformation group T, optimizer update

for x in dataset: # iterate over clean images
y← Poisson(γ ·Hx) # simulate noisy measurement
y1 ← GR2Rsampling(y, α, γ) # Eq. 4
y2 ← Corrupt(y,y1, α) # Eq. 5
x̂← fθ(y1) # restore image from y1

t← select(Tg) # random transformation
gr2r_loss ← GR2R(y1,y2,H, fθ) # Eq. 2
ei_loss ← EI(y1, t,H, x̂, fθ) # Eq. 6
loss ← gr2r_loss + ei_loss # Eq. 7
loss.backward()
update(θ)

We opted for DnCNN because it is a well-established,
reliable, and fast architecture that delivers the flexibility
necessary to distinctly isolate and assess the influence of the
proposed framework. DnCNN has demonstrated efficacy in
noise reduction for QIS images due to its capability to learn
intricate representations while preserving fine details, making it
an ideal candidate for our objectives. The pseudocode outlining
our methodology, which involves the application of GR2R for
denoising followed by EI for demosaicing, is provided in
Algorithm 1.

IV. SIMULATION AND RESULTS

A. Data

The DIV2K dataset, consisting of 800 images for training
and 100 for validation, was used to simulate QIS imaging.
To increase the diversity of the training data, a random crop
technique was applied to the 800 training images, resulting in
a total of 5000 cropped images, each with a size of 256× 256
pixels. For testing, the original 100 validation images were
retained, with a center crop applied to each, producing a size
of 512 × 512 pixels. The simulation of real-world data is
achieved through image processing techniques that replicate
sensor-generated images under low-light conditions. To mimic
the behavior of a sensor in such environments, Poisson noise
was added to the images from the dataset, reflecting the
photon arrival process characteristic of low-light conditions.
A Bayer mosaic was also applied to the images to simulate
the CFA in the sensor, closely replicating how a sensor
captures color information. Different gains of Poisson noise
were introduced, mirroring the gains factors observed in
the experimental setup. These simulations aim to closely
replicate the noise characteristics and spatial resolution
typically seen in real QIS sensors under challenging conditions.
Figure 3 illustrates the effect of varying Poisson gains and the
reconstruction with different methods on a 512× 512 image
captured with a Bayer CFA, highlighting visual degradation
as the gain factor γ increases. The code implementation
was developed using the DeepInverse library [21].
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Table I: Comparison of the PSNR and SSIM values for different gains on the DIV2K dataset

Gain (γ) Metric Supervised Ours PURE+EI [14, 18] MC+EI [18] MC+TV [20]

100 PSNR 30.347 ± 2.326 27.844 ± 3.202 27.997 ± 2.640 25.488 ± 2.635 25.288 ± 2.448

SSIM 0.87 ± 0.05 0.79 ± 0.07 0.80 ± 0.05 0.67 ± 0.06 0.66 ± 0.07

20 PSNR 26.710 ± 2.252 24.492 ± 2.799 22.332 ± 2.434 21.298 ± 2.001 21.448 ± 1.612

SSIM 0.76 ± 0.07 0.67 ± 0.09 0.55 ± 0.05 0.42 ± 0.07 0.45 ± 0.09

10 PSNR 25.090 ± 2.186 23.034 ± 2.694 19.533 ± 1.925 19.206 ± 1.874 19.144 ± 1.484

SSIM 0.70 ± 0.08 0.60 ± 0.10 0.32 ± 0.05 0.31 ± 0.06 0.35 ± 0.09

2 PSNR 21.457 ± 1.978 19.384 ± 2.524 15.425 ± 1.580 13.968 ± 1.634 12.876 ± 1.495

SSIM 0.52 ± 0.09 0.41 ± 0.10 0.15 ± 0.04 0.13 ± 0.04 0.16 ± 0.07

Gain Measurement MC+EI PURE+EI Ours Supervised Reference

100

20

10

Figure 3: Visual Results at Varying gain factor: Qualitative visual comparison of reconstruction methods at different gain.
From left to right: input measurement, MC+EI, PURE+EI, our method, supervised baseline, and the ground truth reference.
Each row corresponds to a distinct gain setting, illustrating how reconstruction quality varies under increasing noise. The figure
highlights the robustness of our approach relative to other self-supervised methods across different noise conditions.

B. Experiments

The model was trained for 300 epochs with a batch size of
20 and a learning rate of 0.001. A 7-layer DnCNN architecture
was used as the backbone, modified to better handle the Poisson
noise model by removing the additive residual connection and
applying a ReLU activation to the difference between the
network output and the input. The training objective included
the GR2R loss, estimated using monte carlo estimation with
10 sampling points per batch and configured with α = 0.1,
along with an EI regularization term based on random rotations,
weighted by a factor of λ = 0.01. The model was optimized
using the Adam algorithm with a weight decay of 10−8, and a
step learning rate scheduler was applied after 80% of the total
training epochs. Training and evaluation were performed on a
GPU, with fixed random seeds to ensure reproducibility. The
evaluations were performed with different gain γ, with values at
100, 20, 10, 2. Different approaches were compared, including

a supervised model and recent self-supervised methods such
as Measurement Consistency (MC) with Total Variation (TV)
[20], MC+EI and PURE method [14] combined to EI, reporting
quality metrics such as Peak Signal-to-Noise Ratio (PSNR) [22],
which is used to quantify reconstruction fidelity in terms of
pixel-wise differences, and Structural Similarity Index (SSIM)
[22], which evaluates perceptual similarity based on structural
information.

C. Analysis

Table I shows that our method closely matches the supervised
baseline across various gain values, often exceeding other unsu-
pervised methods. Specifically, PURE [14] coupled with EI [18]
(PURE+EI) method slightly surpass our approach at a gain
of 100, its performance declines notably with increased noise,
becoming unstable at lower gain. Similarly, the MC+EI [18]
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and MC+TV methods show lower PSNR values throughout
the range, with MC+TV generally performing slightly worse
than MC+EI. In contrast, our method delivers more consistent
and robust results under tougher noise conditions.

Note in Table I that the results obtained with PURE required
careful monitoring of the loss behavior and training metrics,
since the method tended to diverge when addressing both
tasks, indicating instability. For this reason, the best-performing
model checkpoints were selected for evaluation. In addition,
the EI transformation used in the experiments was based on
rotations, which proved highly effective in reconstructing pixel-
level information lost due to the CFA in the image acquisition
process. This is especially beneficial for the demosaicing, where
spatial structure plays a crucial role.

Figure 3 presents a qualitative comparison of reconstruction
results across different gain. Each row corresponds to a specific
gain value, while each column displays the output of a different
method. We can observe that our method achieves better visual
results compared to the other approaches, being outperformed
only by the supervised method.

For a gain of 100, our method achieves a PSNR of 27.844
dB, only 0.153 dB below PURE+EI, which slightly outperforms
us at this gain. However, as the gain decreases, our method
advantage becomes more pronounced. At a gain of 20, we
outperform PURE+EI by over 2 dB, while also surpassing
MC+EI and MC+TV by more than 3 dB. This performance
gap widens further at lower gains: at a gain of 10, our method
outperforms PURE+EI by more than 3.5 dB and exceeds
MC+EI and MC+TV by approximately 4 dB. At the lowest
gain of 2, where degradation is most severe, our approach
maintains a lead of nearly 4 dB over PURE+EI, more than 5
dB over MC+EI, and over 6 dB above MC+TV. Compared to
the supervised baseline, our results remain remarkably close,
with PSNR differences consistently under 3 dB across all gain
levels, demonstrating robustness even in the most adverse cases.
Visually, reconstructions of our method preserve detail and
structure, closely resembling supervised results and surpassing
other self-supervised approaches.

V. CONCLUSIONS

This work demonstrates that our proposed method effectively
addresses the challenge of reconstructing full-color images from
measurements of extremely low light and low photon count,
even under high noise conditions where supervised approaches
often have difficulties. By operating directly on raw sensor
data without requiring clean references, our self-supervised
framework maintains stable and accurate reconstruction across
a wide range of noise levels. Experimental results confirm that,
unlike traditional denoising pipelines that fail under very low
photon arrivals, our approach consistently delivers high-quality
output both quantitatively (PSNR) and qualitatively, without
any additional computational overhead for image recovery.
In summary, our method offers a competitive solution for
color image reconstruction in extreme low-light scenarios
compared to supervised methods, paving the way for reliable
imaging in applications such as nocturnal digital photography.
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