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Abstract—Drone detection under high-illumination conditions
remains a critical challenge due to sensor saturation, which
degrades visual information and limits the performance of con-
ventional detection models. A promising alternative to overcome
this issue is modulo imaging, an approach based on modulo-ADCs
that reset pixel intensities upon reaching a predefined saturation
threshold, thus avoiding saturation loss. This work presents a
methodology based on fine-tuning a detection model using mod-
ulo images, allowing accurate object detection without requiring
High Dynamic Range (HDR) image reconstruction. Additionally,
an optional reconstruction stage using the Autoregressive High-
order Finite Difference (AHFD) algorithm is evaluated to recover
high-fidelity HDR content. Experimental results show that the
fine-tuned model achieves F1-scores above 96% across different
illumination levels, outperforming saturated and raw modulo
inputs, and approaching the performance of ideal HDR images.
These findings demonstrate that fine-tuning with modulo data
enables robust drone detection while reducing inference time,
making the reconstruction process optional rather than essential.

Index Terms—Fine-Tuning, Modulo Imaging, YOLOv1l1,
Drone Detection, HDR recovery

I. INTRODUCTION

The exponential advancement of drone technology has
enabled its application across various sectors, such as pack-
age delivery [1], military reconnaissance [2], aerial photog-
raphy [3], and environmental monitoring [4]. However, the
widespread use has also introduced security challenges due to
the invasion of personal and institutional spaces [5], [6], for
instance certain reports suggest that drones have been utilized
near correction facilities [5], highlighting the urgent need to
detect drones through computer vision systems, both in urban
environments and open areas [7], which plays a crucial role
in the proper development of drone operations [8].

Deep learning has become a key computational approach
to detect objects in a scene. By leveraging neural networks
trained on large-scale datasets, these methods allow the au-
tomatic recognition of complex visual patterns [9], greatly
advancing the field of computer vision, particularly object de-
tection using RGB images [10], [11]. A representative example
is You Only Look Once (YOLO), a real-time detection model
trained to identify and classify objects within images using
supervised learning [12]. However, the effectiveness of these
computer vision systems depends directly on the quality of the
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visual data used to detect and respond to drones [13]. One of
the most significant challenges, in acquiring such quality data,
is the saturation produced by commercial CCD sensors, where
capturing drones flying over bright skies becomes particularly
difficult due to their small size and rapid movement [14],
resulting in overexposed regions that obscure essential visual
information [15]. This degradation severely compromises im-
age quality and, consequently, the performance of visual-based
drone detection methods [16].

A promising solution to the saturation issue in imaging
is modulo imaging [17], [18], which utilizes modulo-ADC
sensors that reset pixel intensity once an intensity threshold
is exceeded [19]. This method enables the capture of non-
saturated data in a coded format, known as modulo images.
While modulo images do not preserve color integrity, they re-
tain sufficient structural and fine detail for detection tasks [20],
making them particularly effective in high-illumination envi-
ronments. For instance, in [21], modulo imaging is combined
with deep learning models for vehicle detection. The authors
employed the Simultaneous Phase Unwrapping and Denoising
Algorithm (SPUD) [22] to recover the High Dynamic Range
(HDR) image and reverse the transformation applied by the
modulo sensor before applying detection algorithms. However,
the use of SPUD introduces significant limitations: it incurs a
considerable computational cost during inference and relies on
band-limited signal assumptions, which are often not met in
real-world scenarios, resulting in poor reconstruction quality
and, consequently, suboptimal object detection performance.

In this work, we present an alternative approach that elim-
inates the need for a recovery stage by fine-tuning a detec-
tion model directly on modulo images. This strategy allows
the model to adjust its weights for processing modulo im-
ages, leading to improved detection robustness under extreme
lighting conditions. Additionally, we propose exploring the
use of an enhanced reconstruction algorithm, Autoregressive
High-Order Finite Difference (AHFD) [23], which offers two
key advantages over SPUD: (i) it introduces fewer artifacts
around edges, preserving crucial visual details, and (ii) it
demonstrates greater stability across varying illumination and
noise conditions. While fine-tuning on raw modulo images
alone achieves strong detection performance, the application of
AHFD becomes particularly valuable in scenarios that require
human interpretability (e.g., for visual inspection) or when

Authorized licensed use limited to: Universidad Industrial de Santander. Downloaded on October 07,2025 at 19:40:00 UTC from |IEEE Xplore. Restrictions apply.



No

Real scene Modulo image

Recover?

Modulo
Camera

Yes

Recovery
Algorithm

Fig. 1. Drone detection pipeline using modulo images. A modulo camera captures the scene and produces a modulo image. Optionally, this image can be
processed through a recovery algorithm to estimate HDR content, which is then passed to a standard detector model. Alternatively, the raw modulo image is
directly input to a fine-tuned model trained specifically on modulo data, allowing accurate detection without recovery.

additional computer vision tasks (such as segmentation or
tracking) need to be performed on the reconstructed data. In
these cases, reconstruction serves as an optional enhancement
rather than a mandatory step.

II. BACKGROUND

The modulo-sensing process resets the pixel intensity each
time the saturation threshold \ is reached (usually A = 2% —
1) [24]. Assuming a vector signal x € R™ withn = 3xHxW,
the modulo-sensing model can be mathematically defined as

y = mod (x, \), (1)

where mod (-, A) is the modulo operator and y € R™ is the
acquired modulo measurements.

Visually, a modulo image may resemble a regular image, but
in saturated regions it exhibits desaturation and color distortion
due to the wrapping effect. This phenomenon is illustrated in
Figure 1. Although modulo images retain structural details,
they do not provide direct access to the original signal =
due to the intensity wrapping. Therefore, recovering x from
the measurements y requires inversion algorithms specifically
designed to reverse the modulo operation and reconstruct the
original high dynamic range content [22], [23].

III. METHOD

This section presents the proposed methodology, which is
structured in three stages: (A) formulating and solving the fine-
tuning optimization problem to adapt the weights of the pre-
trained model for modulo images, (B) Performing detection
task using a YOLOvI1 model Fine Tuned with modulo
images. Additionally, it is considered an image recovery stage
(C) using a HDR recovery algorithm.

A. Fine-tuning optimization problem

The optimization process, known as fine-tuning, can be
mathematically expressed as:

1 m
o* in — YOLOu(yi), ;). 2
Eargmgmngﬁ( OLOy(yi), ci) )

1=

In this optimization problem, 6* represents the optimal
parameters of the YOLOv11 model and £ the cost function
composed of three loss functions, box loss, classification loss
and distributed focal loss [25], which quantifies the difference
between the model predictions YO LOy(y;) and the true labels
¢;. The goal is to obtain the optimal model parameters 6
that allow the YOLOvI11 detector to perform detection task
directly on modulo images. Instead of training the model
from scratch, it leverages a YOLOvVI11 network pre-trained on
RGB images. This is because modulo images preserve the
spatial structure and object boundaries of the original scenes,
allowing the model to reuse the low-level features learned
during pretraining. Fine-tuning adapts the model to the visual
properties of modulo data, enabling effective interpretation
without the need for recovering the original HDR image.

B. Detection task

After optimizing the model weights, the detection task is
performed employing the YOLOV11 n configuration, which,
is represented as follows:

¢ =YOLO-(y), 3)

where 0* represents the optimized weights and ¢ = {c(i) }1111
represents the set of N bounding boxes predicted by the
YOLOVI11 detection model for the N classes instances where
y denoting the raw modulo image. Each bounding box c(*)
is defined by the coordinates ¢ = [jy, k1, ja, k2, 2], where
(j1, k1) and (ja, ko) are the top-left and bottom-right coordi-
nates of the box, respectively, and z is the confidence score
associated with the detection.

Although fine-tuning allows the model to operate directly on
modulo images, there may still be scenarios where recovering
a more interpretable image is beneficial, for example, to
support visual inspection or ensure compatibility with models
not adapted to modulo data.
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C. Recovery with AHFD

As a complementary step, the AHFD algorithm [23] is
explored to optionally recover an HDR image from the modulo
representation. Given a modulo image, this method estimates
the original HDR image by solving the optimization problem:

s argminHAN:c—mod(ANy,A)H;—i-R(w), 4)

where AN represents the high-order finite differences, x
the original signal, y the modulo measurements, and R(x) a
regularization term. This optimization is solved in two steps:

1) Step 1: Autoregressive phase unwrapping: In the first
stage, the algorithm estimates how many times each pixel
exceeded the sensor dynamic range, rather than directly re-
constructing the original image. To do so, the image is first
vectorized following a zig-zag path along columns and rows,
ensuring that neighboring pixels remain adjacent in the vector
representation. This facilitates the detection of local variations
in intensity. The algorithm then analyzes these variations using
high-order finite differences and solves an iterative process
based on frequency-domain projections via the 1D Discrete
Cosine Transform (DCT).

2) Step 2: Stripe Artifact Removal: As a result of the
first step, stripe-like artifacts may appear in the reconstructed
image, especially when the band-limited signal assumption
is not fully met [26]. To mitigate this, a sparse correction
map is computed using a spatial filtering process. This step
employs the 2D DCT to efficiently remove structured artifacts,
improving the visual quality while preserving fine details.

IV. SIMULATIONS AND RESULTS

This section evaluates the performance of the proposed
Fine-Tuned YOLOvI1 model trained with modulo images,
in comparison to standard detection models and recovery-
based approaches. The main objective is to analyze object
detection performance under varying intensity levels. For this,
the methodology simulates the acquisition of modulo im-
ages, saturated images, and recovered HDR images. Recovery
is performed using SPUD [22], as the state-of-the-art, and
AHFD [23], as an enhanced reconstruction algorithm. In
contrast, the proposed approach bypasses the recovery stage
by directly fine-tuning YOLOv11 on modulo inputs, aiming
to improve detection under high dynamic range scenarios,
without a recovery stage. Specifically, to simulate different
intensity conditions, each HDR image x is normalized to the
range [0,1] and then scaled by an intensity factor a.

A. Experimental Setup

Dataset: Images are obtained from the public Drone Dataset
(UAV), which contains 1359 RGB images, available on Kag-
gle [27], and then standardized through a resizing procedure
in which the longest side of each image is scaled to 1024
pixels while preserving the original aspect ratio. As the
dataset provides RGB images that have already undergone
demosaicing, the potential effects of Bayer pattern and its
interaction with modulo sensing are not considered in this

work. Following this, the methodology generates two types
of image variants: modulo images and saturated images. To
obtain the modulo images, it first applies an intensity factor
to the resized images, and subsequently performs a modulo
operation, mathematically defined as:

y =mod (x, - a, \), 5)

where x, is the resized image, y is the modulo image, A =
28 —1, and « € {1.5,2,3} is the intensity factor that adjusts
the image intensity to simulate different light exposure levels.

In addition, the methodology generates the saturated vari-
ants by applying the same intensity factor to the resized
images, followed by a clipping operation that limits pixel
intensity values to the sensor’s maximum capacity A. Formally,
the resulting saturated image is given by:

Ts = minimum (z, - @, A), (6)

where x5 is the saturated image. The performance of dif-
ferent imaging methodologies is evaluated across saturation
scenarios, ranging from low to extreme. During the fine-tuning
stage, raw module images were used, avoiding the image
reconstruction step.

Network Setup: For drone detection, the methodology
employs YOLOvI11 using its n configuration, a lightweight
variant optimized for real-time applications. YOLOvVI11 is a
convolutional neural network (CNN) with a backbone for
feature extraction, a neck for multi-scale feature aggregation,
and a detection head for predicting object bounding boxes and
class probabilities. Given an input image, the model outputs
bounding boxes for detected drones, each with a confidence
score and predicted class label. The model’s process follows
the formulation given in Equation 3.

Metrics: To assess the effectiveness of the proposed detec-
tion method, three metrics are employed: precision, recall, and
F1-score [28]. Precision evaluates how many of the instances
predicted as positive are actually correct, reflecting the model’s
ability to avoid false alarms.

Precisi TP -

reCISIon_TPJrFP’ @)

where T'P (True Positives) refers to the number of correctly

detected positive instances, and F'P (False Positives) repre-

sents the number of instances that were incorrectly classified
as positive by the model.

Next, recall quantifies the model’s capacity to detect all
relevant objects, measuring how many of the actual positives
were correctly identified.

TP
Recall = TP FN (8)
where F'N (False Negatives) denotes the number of actual
positive instances that were not detected by the model.

Finally, the methodology uses the Fl-score to obtain a
single performance indicator that balances both precision and
recall. This metric is particularly useful when dealing with
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TABLE 1
PERFORMANCE COMPARISON FOR YOLOV11 UNDER DIFFERENT INPUT TYPES AND PROCESSING METHODS. THE BEST RESULTS ARE HIGHLIGHTED IN
BOLD, WHILE THE SECOND-BEST RESULTS ARE UNDERLINED. RESULTS ARE REPORTED FOR DIFFERENT ILLUMINATION LEVELS « € 1.5, 2, 3.

Method | F1-Score (o) | Recall (o) | Precision (a) | Time(ms)
| 15 2 3| 15 2 3| 15 2 3|

Saturated 87.1 + 189 79.9 + 264 73.3 £ 29.7 91.3 + 16.8 87.8 + 22.7 84.8 + 264 85.9 + 20.7 78.5 £+ 28.2 70.7 £+ 32.4 24.495 + 3.2453
Modulo 80.7 + 22.2 81.1 + 23.0 753 £+ 26.7 92.5 + 13.3 91.0 £ 17.5 89.0 + 21.3 77.0 £ 254 71.5 £ 26.1 719 + 28.8 25.677 + 3.4491
Recovery SPUD 90.1 £ 12.5 88.2 + 16.1 88.1 £ 155 924 4+ 133 91.2 + 15.3 91.8 + 14.3 89.1 + 13.1 86.9 + 18.1 87.4 + 16.6 81.170 + 0.5312
FineTune Modulo 25% (Ours) 83.7 + 194 80.5 + 21.7 80.7 + 23.2 849 + 19.9 83.7 £+ 21.9 84.0 £+ 243 85.1 + 21.3 80.3 + 24.0 80.4 + 25.1 25.547 + 3.3524
FineTune Modulo 50% (Ours) 88.2 + 13.0 85.1 £+ 16.8 859 + 169 90.6 + 13.2 90.8 + 14.2 89.8 + 15.2 87.6 + 15.5 83.1 + 199 84.7 + 19.8 26.700 + 3.3996
FineTune Modulo 100% (Ours) 91.7 + 721  89.0 &+ 13.1 89.9 £ 13.1 924 4+ 548 939 + 114  92.7 4+ 134 90.2 + 10.0 86.3 + 15.8 88.3 + 14.5 22.043 £ 0.4429
Recovery AHFD (Ours) 91.2 £ 11.1 88.6 £ 16.1 90.0 + 11.6 94.5 + 7.47 92.1 &+ 14.2 93.3 + 109 89.7 £ 14.1 87.2 + 18.5 838.1 + 144 81.573 &+ 0.6701
Ideal HDR ‘ 92.2 + 8.99 94.7 + 6.80 91.2 £ 109 22.022 + 0.4292

Saturated

AHFD (Ours) Ideal HDR

FineTune (Ours)

- --.“‘mﬂ

674 99.5 - 51.0

64.0 -

100 - 47.2 92.9 -99.5 - 87 12
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Fig. 2. Visual and metric results for each method under different intensity levels (o« = 1.5, 2, 3). Detection images are shown along with their corresponding

F1-score, Recall, and Precision metrics.

imbalanced datasets or when it is crucial to maintain a trade-
off between false positives and false negatives. It is computed
as the harmonic mean of precision and recall:
Precision x Recall 9
Precision + Recall’ ©)
All simulations were conducted using the Google Colab
environment, which provides access to an Intel(R) Xeon(R)
CPU @ 2.00GHz, 12.7 GB of RAM, and an NVIDIA Tesla
T4 GPU with 15 GB of VRAM. The GPU was used during
the training stage to accelerate the fine-tuning process, whereas
the CPU was employed during the validation stage to measure
the model’s performance, ensuring efficient execution.

B. Performance Analysis of YOLOvII Fine-Tuned with Mod-
ulo Images for Drone Detection

Fl-score = 2 x

As evidenced in Table I, the proposed fine-tuning strategy
using modulo images demonstrates a strong capability to
enhance detection performance under saturated lighting condi-
tions. The configurations labeled as “FineTune Modulo X%”
correspond to training the model using X% of the available
modulo image training data, while the test set (20% of the
full dataset) stays unchanged and separate from all training
scenarios. When the YOLOvll model is fine-tuned using

100% of the modulo dataset, the results show remarkable
improvements across all evaluation metrics, achieving an F1-
score of 91.7% for a« = 1.5, a precision of up to 90.2% for
« = 1.5, and a recall of 93.9% for o« = 2. These results are not
only superior to those obtained with saturated or raw modulo
images but also closely rival the performance of recovery-
based approaches, such as AHFD, which delivers the best
metrics overall. However, it is important to note the strong
dependency of the fine-tuning approach on the quantity of
training data available. When the dataset is reduced to 50% or
25%, the Fl-score drops to 88.2% and 83.7% respectively,
highlighting a critical limitation: while fine-tuning avoids
reconstruction and achieves fast inference time (22.043 ms),
it demands a sufficiently big and well-annotated dataset to
be effective. This trend is further supported by the visual
comparisons in Figure 2. At low intensity levels o = 1.5,
the raw modulo input fails to produce any detections, while
the fine-tuned model correctly identifies drones with precision
and spatial consistency. At a = 2, detection with saturated
inputs and the SPUD method degrades noticeably, either due to
overexposure or failed recovery. In contrast, both AHFD and
FineTune (Ours) maintain robust detection outputs. Finally,
under extreme intensity a = 3, recovery-based methods show
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visual artifacts or detection errors, whereas the fine-tuned
model continues to offer accurate bounding boxes, visually
aligning with the high scores reported. These visual results re-
inforce the effectiveness of the proposed approach and confirm
its resilience in high dynamic range scenarios. The proposed
fine-tuning strategy exhibits competitive performance using
approximately 50% of the processing time, offering an effi-
cient and competitive alternative to computationally intensive
reconstruction pipelines, in which approximately double the
total processing time, presenting a critical drawback for real-
time applications where fast inference is essential.

V. CONCLUSION

This work demonstrates that fine-tuning a detection model
with modulo images significantly enhances drone detection
in high-illumination environments, overcoming the limitations
of traditional sensors affected by saturation. The experimen-
tal results reveal Fl-scores exceeding 89% across various
lighting conditions, validating the effectiveness of the fine-
tuning approach. Unlike state-of-the-art methods that rely on
computationally intensive HDR reconstruction, our approach
eliminates the need for image recovery, offering faster and
more efficient processing while maintaining high detection
accuracy. In contrast, recovery algorithms require up to 22.043
ms for drone detection. Additionally, we introduce an optional
HDR recovery step using the AHFD algorithm, which further
improves image quality in scenarios where human visual
interpretation is necessary. This approach provides a com-
pelling alternative for real-time drone detection in challenging
lighting conditions, with potential for deployment in practical
applications where computational efficiency is critical.
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