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Spectral Images (SI) are acquired at multiple wavelengths across the electromagnetic spectrum, providing
information that enhances performance in tasks such as material segmentation and classification by
resolving ambiguities inherent in RGB images. SI devices are designed to capture a large number of
spectral bands, which increases both cost and acquisition time, thereby limiting their practical deployment.
However, not all spectral bands contribute equally to task-specific performance. To address this issue, a
Deep Spectral Band Selection (DSBS) framework is proposed for spectral imaging tasks. Unlike previous
methods that emphasize the preservation of non-task-specific information, DSBS identifies the most
informative bands for a given task by jointly training a fully differentiable band selector and a neural
network within an end-to-end learning framework. The selection process is guided by a proposed bin
function and a custom ℓp-norm regularization term to achieve the desired number of spectral bands.
Experimental results in material segmentation and classification tasks indicate that DSBS outperforms
state-of-the-art machine and deep learning methods.
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1. INTRODUCTION1

Spectral imaging is a technique for acquiring and process-2

ing spectral information from a scene, resulting in a three-3

dimensional data cube, F ∈ RM×N×L, referred to as a Spectral4

Image (SI), where (M, N) denotes the spatial dimensions and L5

represents the number of spectral bands. The spectral content in6

an SI reveals the material composition within a scene, enabling7

a wide range of real-world applications, including food quality8

assessment [1], oil and mineral exploration [2], and precision9

agriculture [3]. For food analysis, for instance, SI enables non-10

destructive estimation of physicochemical properties, in contrast11

to conventional techniques that require sample destruction [4–6].12

Recent advances in SI systems have focused on capturing13

hundreds or even thousands of narrow spectral bands to en-14

hance spatial and spectral resolution, enabling identification of15

targets based on spectral variations [7, 8]. However, these sys-16

tems often involve high acquisition costs and prolonged capture17

times, which may restrict their use in practical applications [9].18

Furthermore, not all acquired bands are necessary for tasks such19

as classification or material segmentation only performance spe-20

cific task. As an alternative, Band Selection (BS) methods aim to21

identify the most informative bands for a given task, support-22

ing the design of customized and lower-cost spectral imaging23

systems [10, 11]. For example, in SI systems based on color filter24

arrays [12], by selecting a reduced number of bands or filters25

can lead to improved spatial resolution, while in systems em-26

ploying band-by-band illumination [13], the sensing time can be27

decreased. Additionally, the cost of filter-based systems based28

on BS is generally lower than that of standard SI devices, which29

often rely on complex optical elements, making filter-based ap-30

proaches more economically viable for SI acquisition.31

BS methods leverage prior information such as correlation,32

covariance, similarity, low-rank structures, or entropy, to identify33

the most relevant spectral bands [14–16]. Alternative approaches34

formulate the BS problem using clustering, graph theory, or rank-35

ing strategies [17–23]. Recently, deep learning-based methods36

have introduced attention mechanisms, convolutional networks,37

reinforcement learning, and statistical learning to guide the BS38

process [24–26]. These techniques focus on selecting bands that39

best preserve information and are evaluated through classifi-40

cation tasks. However, most existing methods fail to account41

for the specific requirements of computational tasks such as42

material classification or segmentation, leading to suboptimal43

performance. Selecting bands without considering task-specific44

objectives can introduce redundancy and irrelevance, as the se-45

lected bands may not correspond to the discriminative features46

required for accurate modeling. Incorporating task-based crite-47

ria into the BS process is therefore essential for improving the48

effectiveness of spectral imaging tasks.49

To address this limitation, a Deep Spectral Band Selection50

(DSBS) method is proposed, which integrates spectral BS with51

spectral imaging tasks within an End-To-End (E2E) framework.52

http://dx.doi.org/10.1364/ao.XX.XXXXXX


Research Article 2

DSBS introduces a fully differentiable BS optical encoder that53

identifies the most informative spectral bands through a dis-54

cretization function and a custom ℓp norm regularization, en-55

abling the selection of an optimized number of bands tailored56

to the specific task. By embedding this BS encoder within spec-57

tral imaging networks, such as those used for classification and58

material segmentation, the E2E approach dynamically adapts59

BS to enhance task performance. This integration also reduces60

hardware complexity and acquisition time, offering a practical61

approach for applications such as food quality assessment, envi-62

ronmental monitoring, and remote sensing. A review of existing63

literature indicates that BS methods have not been previously64

assessed for material segmentation tasks. The present work65

provides the first evaluation of BS techniques in this context, ex-66

tending their applicability to a broader range of spectral imaging67

applications.68

2. RELATED WORK69

BS methods in spectral imaging are commonly categorized into70

two main approaches: task-independent selection, where bands71

are chosen before the spectral imaging task, and task-based se-72

lection, where the BS process is optimized jointly with model73

training. Traditional methods follow a two-stage pipeline, in74

which bands are first selected and subsequently evaluated us-75

ing classification models. In contrast, E2E approaches embed76

the BS process within model optimization, thereby aligning se-77

lected bands with task-specific objectives and simplifying the78

workflow.79

A. Task-independent Band Selection Methods80

Tasks-independent BS methods perform selection as a stan-81

dalone preprocessing step. Once the band subset is identified,82

the selected bands are evaluated in spectral imaging taskssuch83

as classification, using established machine learning and deep84

learning algorithms such as Support Vector Machine (SVM), K-85

Nearest Neighbors (KNN), Fully Connected Networks (FC), and86

CNN, among others [13]. In addition, the Correntropy-based87

Sparse Spectrum Clustering (CSSC) [27] uses a correntropy mea-88

sure to create an affinity matrix, capture non-linear relationships,89

and select bands to reduce noise. Fast and Latent Low-Rank Sub-90

space Clustering (FLLRSC) [28] clusters bands based on latent91

low-rank subspaces, identifying bands that capture essential92

spectral features. Laplacian Regularized Low-Rank Subspace93

Clustering (LLRSC) [29] combines low-rank representation and94

Laplacian regularization to preserve global and local correlations.95

The Optimal Clustering Framework [19] and the Adaptive Sub-96

space Partition Strategy (ASPS) [30] use dynamic programming97

and noise-based subspace partitioning, respectively, to minimize98

redundancy while retaining spectral information. The Dropout99

Concrete Autoencoder (Dropout CAE) [26] uses a concrete selec-100

tor layer within an autoencoder to classify and retain only the101

essential bands for reconstruction. In contrast, BS-Nets [24] use102

a Band Attention Module (BAM) to weight bands for reconstruc-103

tion, but its effectiveness is highly dataset-dependent, limiting104

its broader applicability.105

B. Task-based Band Selection Methods106

To address the limitations of task-independent strategies, re-107

cent research has focused on integrated approaches that jointly108

optimize BS and spectral imaging tasks within a unified E2E109

framework. This integration enables the identification of task-110

relevant bands, improving model performance while also reduc-111

ing the complexity and cost of SI system design. For instance,112

Aya et al. [11] proposed an E2E framework incorporating a113

Bernoulli distributed binarization vector. This vector facilitates114

stochastic BS through a learnable mask, which is optimized115

via backpropagation to minimize classification loss under con-116

straints on the number of selected bands. Recently, Karen et al.117

[10] introduced binary and ranking-based regularization terms118

to guide the selection process and ensure an optimal subset119

of bands, thereby enhancing classification accuracy. Building120

on these developments, the present work formulates a method121

that employs discrete functions for a realistic BS process and122

generalizes the ranking-based regularization using an ℓp norm123

formulation. This advancement provides selection mechanism124

that extends beyond classification, enabling its application to125

tasks such as material segmentation and object detection. Nev-126

ertheless, most existing BS methods continue to be evaluated127

primarily in classification contexts, which limits their broader ap-128

plicability. Expanding BS techniques to additional tasks has the129

potential to enhance performance and reduce acquisition costs130

across various domains, including environmental monitoring,131

food quality assessment, and remote sensing [31, 32].132

3. BAND SELECTION OPTICAL ENCODER133

An SI can be acquired using the filter-based method, which in-134

volves an optical system composed of two lenses, a filter wheel135

with multiple spectral responses, and a 2-Dimensional (2D) sen-136

sor. Light from the scene is first captured by an objective lens,137

which collects and directs it toward the filter wheel. Each filter,138

characterised by a specific spectral transfer function, attenuates139

wavelengths outside its designated range, isolating a narrow-140

band portion of the spectrum. A second lens then refocuses the141

filtered light onto the 2D sensor, generating a monochromatic142

image corresponding to a single spectral band of the scene.143

Mathematically, the scene can be represented by the spectral144

radiance function f (x, y, λ), where (x, y) denotes the spatial145

coordinates and λ denotes the wavelength. The spectral transfer146

function of a given filter can be modeled using the Johnson’s SU147

distribution [33] as148

H(λ|λl , σ, β, δ) =
δ

σ
√

2π
· 1√

1 +
(

λ−λl
σ

)2

× exp

(
−1

2

(
δ sinh−1

(
λ − λl

σ

)
− β

)2
)

,

(1)

where λl is the central wavelength, σ is the bandwidth, β con-149

trols the asymmetry, and δ governs the spectral energy concentra-150

tion. The intensity measured by the sensor at the corresponding151

filter position is given by152

f̃l(x, y) =
∫

H(λ|λl , σ, β, δ) · f (x, y, λ)dλ, (2)

where l indexes the spectral band associated with the central153

wavelength λl . Assuming a discretized formulation of Eq. (2),154

the observed image at band l can be expressed as155

f̃l = hT
l F, (3)

where h ∈ RL×1 is the discrete transfer function for the l-th156

filter, and F ∈ RL×MN is the discretized SI matrix, with spatial157

resolution (M, N) and L spectral bands. As the filter wheel158
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Fig. 1. Overview of the proposed DSBS framework. A spectral image F(i) is processed by a band selection encoder parameterized
by a binary selector ϕ. Selected bands G(i) are modeled via Hϕ and used as input to a model Mθ to estimate the task output Ĉ(i).
The model is trained end-to-end by minimizing a task-specific loss L regularized by R(ϕ).

rotates to acquire each spectral band sequentially, the full SI can159

be described mathematically as160

F̃ = HF, (4)

where H = [h1, . . . , hL]
T represents the stacked spectral trans-161

fer functions for the entire filter set. However, as the number162

of filters L increases, the system becomes more complex and163

acquisition times longer. To mitigate this, the BS process aims164

to identify a reduced subset of B << L filters for acquisition.165

Mathematically, this process is equivalent to selecting a subset166

of rows from H. Consequently, by defining a selector vector167

ϕ ∈ {0, 1}L, with ||ϕ||1 = B, the BS can be modeled as168

G = diag(ϕ)HF := Hϕ(F), (5)

where G ∈ RL×MN denotes the reduced SI composed of the B169

selected bands, with the remaining bands set to zero, and Hϕ170

represents the BS optical encoder parameterized by the binary171

vector ϕ. In this context, inference is performed using G instead172

of the full spectrum F, while maintaining the task performance173

by optimally learning the binary selector vector ϕ.174

4. END-TO-END SPECTRAL BAND SELECTION FOR175

SPECTRAL IMAGE TASKS176

The proposed method performs a joint optimization of the BS177

encoder Hϕ(·) and a Deep Neural Network (DNN) Mθ(·) with178

learnable parameters θ, to achieve task-adaptive spectral band179

selection within an end-to-end learning framework. Given180

a dataset D = {F(i), C(i)}K
i=1 consisting of K paired samples,181

where each F(i) represents a SI and C(i) ⊂ Ω denotes the corre-182

sponding ground truth labels within the output space Ω asso-183

ciated with the SI task, the joint optimization problem can be184

formulated as185

(ϕ∗, θ∗)∈arg min
ϕ,θ

EF,C∼D
[
L
(
Mθ

(
Hϕ(F)

)
, C
)
+R(ϕ)

]
, (6)

where ϕ∗ and θ∗ are the optimized parameters for the band186

selector and DNN, respectively. The function L corresponds to187

the task-specific loss (See following subsections), and R(ϕ) is188

a regularization term that enforces convergence toward a pre-189

defined number of selected bands. At initialization, the selector190

vector is set to ones, i.e., ϕ ∈ {1}L. During training, continuous191

values in R are allowed for gradient-based optimization. How-192

ever, a binarization function is subsequently applied to enforce a193

discrete selection in {0, 1}L, ensuring that the intensity structure194

of spectral signatures is preserved in the reduced representation.195

The binarization function is then formulated as196

bin(ϕ)l =

{
1 if ϕl ≥ 0
0 if ϕl < 0

, (7)

where bin(·) is non-differentiable and thus incompatible with197

gradient-based optimization. To address this, a custom Straight-198

Through Estimator (STE) [34] is designed using a surrogate func-199

tion A(ϕ), which approximates the gradient as200

∂T (ϕ)

∂ϕ
=

∂T (ϕ)

∂bin(ϕ)

∂bin(ϕ)

∂ϕ
≈ ∂T (ϕ)

∂bin(ϕ)
A(ϕ), (8)

where T ∈ {L,R} is associated with Eq. (6) and denotes any201

loss function dependent on ϕ. The surrogate function A(·) is202

defined element-wise as a customized variant of the hardtanh203

function, designed to smooth the gradients of the band selector204

and enable stable optimization. Specifically, it is formulated as205

A(ϕ)l =


1 if ϕl ≥ 0.5
ϕl if 0.5 > ϕl > −0.5
0 if ϕl ≤ −0.5

, (9)

where the gradient values are constrained to the range {0, 1} to206

remain consistent with the behavior of the binarization function207

bin(·). Finally, the regularization function R(·) imposes a con-208

straint on the number of selected spectral bands B, generalizing209

the formulation presented in [10]. It is defined as210

R(ϕ) = ρ|B − ||bin(ϕ)||1|p, (10)

where ρ is a regularization parameter, ||bin(ϕ)||1 represents211

the number of bands selected the binarization vector ϕ, and212

p controls the penalty strength. The subsequent subsections213

describe the application of this framework to spectral imaging214

tasks such as classification and material segmentation, along215

with their respective loss functions L.216

A. Classification217

For SI classification, the fidelity term in Eq. (6) is defined as the218

cross-entropy loss219

L(Mθ(Hϕ(F)), c) = −
C

∑
j=1

1c=jlog([Mθ(Hϕ(F))]j), (11)
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where {F, c} denotes a sample-label pair, c(i) ∈ Ω = {0, . . . , C −220

1} is the ground-truth class label, and C is the maximum number221

of classes. The indicator function 1V equals 1 if c = j and 0222

otherwise, and [Mθ(·)]j represents the jth element of the DNN223

output.224

B. Material Segmentation225

For material segmentation, each spectral signature in the SI F is226

assigned a material class, resulting in a label vector c ∈ RMN . In227

this task, the predicted segmentation map is computed as228

ĉ = Mθ(Hϕ(F)) ∈ RMN , (12)

where Ĉ denotes the estimated class scores for each spatial loca-229

tion. Following the approach in [31], the fidelity term in Equa-230

tion Eq. (6) is defined using the focal loss function231

L(Mθ(Hϕ(F)), c) = −
C

∑
j=1

1c=jα(1 − eĉj )γlog(ĉj), (13)

where α ∈ R is a weighting factor, and γ ∈ R is the focusing pa-232

rameter, both of which control the contribution of well-classified233

versus hard-to-classify samples during training.234

5. SIMULATIONS AND RESULTS235

This section presents the experimental validation of the pro-236

posed method DSBS, which is designed to identify optimal spec-237

tral bands for spectral imaging tasks, improving performance238

while reducing hardware and operational costs. The experi-239

mental setup includes a comparative analysis of DSBS against240

state-of-the-art machine and deep learning based algorithms241

in classification and material segmentation tasks. All experi-242

ments were conducted on a single NVIDIA RTX 3090 GPU and243

repeated five times, which reported results representing the av-244

erage performance across these runs. The code is available at245

https://github.com/Enmartz/DSBS.246

A. Classification Task247

Datasets. The evaluated datasets are Indian Pines, Pavia Uni-248

versity, and Salinas. These datasets differ in spatial resolution,249

spectral range, and number of land cover classes, making them250

standard benchmarks for assessing SI classification algorithms,251

as summarized in Tab. 1. Indian Pines and Salinas, both ac-252

quired by the AVIRIS sensor, provide broad spectral coverage253

from 400 to 2500 nm, and are commonly used in agricultural and254

environmental monitoring tasks. In contrast, the Pavia Univer-255

sity dataset, acquired by the ROSIS sensor, focuses on urban land256

cover analysis with a narrower spectral range of 430 to 860 nm.257

The number of land cover classes also varies, with Indian Pines258

and Salinas containing 16 classes each, whereas Pavia University259

includes 9 classes. Additionally, all the datasets were partitioned260

into 5% of the spectral signatures for training, 45% for validation261

and 50% for testing. These variations present diverse challenges262

for SI classification, requiring effective feature extraction and263

task-specific learning strategies.264

Models. A Convolutional Neural Network (CNN), inspired265

in [10], is employed as the classification model. This architecture266

consists of 6 one-dimensional convolutional layers followed by267

4 fully connected (FC) layers, each with ReLU activation func-268

tions. Each input corresponds to a spectral signature f ∈ RL,269

representing a column for each SI F. The model outputs a one-270

hot encoded label vector c, performing classification according271

Table 1. Overview of the spectral image datasets used for land
cover classification.

Dataset Sensor Location Size Bands Range Classes
Indian Pines AVIRIS USA 145 × 145 200 400–2500 16
Pavia Univ. ROSIS Italy 610 × 340 103 430–860 9

Salinas AVIRIS USA 512 × 217 204 400–2500 16

to Eq. (11). The training configuration includes a learning rate272

of 10−3, a batch size of 32, and 8000 epochs, enabling conver-273

gence of both the BS optical encoder until the desired number274

of bands and classification model. Additionally, an ℓ2-norm275

regularization with a weight of 10−4 is applied to the FC layers.276

A preprocessing step is applied to each dataset, consisting of277

global min-max normalization for each spectral band.278

After training the DSBS framework and identifying the se-279

lected bands, an additional evaluation is conducted using only280

the selected bands in the form G. This evaluation is carried out281

using four SOTA ML and DL models: Support Vector Machine282

(SVM), K-Nearest Neighbors (KNN), FC, and CNN (with the283

same architecture using during E2E DSBS training) [35]. All284

models are trained from scratch on the selected bands to assess285

their classification performance and to evaluate the generaliza-286

tion capacity of the BS.287

Metrics. Performance is evaluated using Overall Accuracy288

(OA), Average Accuracy (AA), and the Kappa coefficient. Given289

a confusion matrix NC×C, where each entry nij denotes the num-290

ber of samples whose ground-truth class is i and that were pre-291

dicted as class j, OA quantifies the proportion of correctly clas-292

sified samples over the total number of samples, providing a293

global measure of classification accuracy as294

OA =
1
N

C

∑
i=1

nii, with N =
C

∑
i=1

C

∑
j=1

nij (14)

AA computes the average of per-class accuracies, offering a bal-295

anced view of model performance across all classes, particularly296

in the presence of imbalanced datasets as297

AA =
1
C

C

∑
i=1

nii
ni

, where ni =
C

∑
j=1

nij (15)

where ni is the total number of samples with in class i. Lastly,298

the Kappa coefficient (κ) adjusts the observed agreement (OA)299

for the agreement expected by chance (PE), providing a more300

robust measure of prediction reliability as301

κ =
OA − PE

1 − PE
, with PE =

1
N2

C

∑
i=1

ni · np
i (16)

where np
i = ∑C

j=1 nji is the number samples predicted as class i,302

and N is the total number of samples.303

A.1. Ablation Study of the Band Selector304

This experiment evaluates the impact of the two main compo-305

nents of the proposed DSBS framework: the BS optical encoder306

incorporating the bin(ϕ) function, and the general regulariza-307

tion term R(ϕ) that controls the number of selected bands. To308

quantify the improvements, DSBS is compared against the E2E-309

HSI method [10] using OA, AA, and κ classification metrics.310

Table 2 presents the results on Indian Pines dataset using311

10 selected bands. The evaluation includes a variation on the312

regularization exponent p ∈ {0.5, 1, 2}, associated with the regu-313

larization term. DSBS consistently outperforms E2E-HSI across314

all metrics, achieving an improvement of 6 − 8%. The main315

https://github.com/Enmartz/DSBS
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Fig. 2. Evolution of the Band Selector. Behavior mid-training
(purple) and post-training (blue), visualized using a spectral
signature (black), for E2E-HSI [10] and DSBS. The spectral
signature was scaled for visualization. During training, global
min-max normalization and standardization were applied to
the full dataset for DSBS and E2E-HSI, respectively.

advantage is attributed to the application of the binarization316

function bin, which is not present in E2E-HSI. Moreover, tuning317

the regularization strength to ρ = 0.5 results in an additional318

improvement of 0.25 − 0.5% compared to other values. Conse-319

quently, the value is tired for all subsequent experiments.320

To further illustrate the benefits of the proposed method, Fig.321

2 visualises input of the classification model G = Hϕ(F), over322

the course of training using a representative spectral signature323

F. Compared to E2E-HSI, the proposed approach preserves324

both the structure and intensity of the spectral signature, while325

E2E-HSI introduces notable distortions during training. This326

improvement is primarily attributed to the inclusion of the bina-327

rization function, as corroborated by the quantitative results in328

Tab. 2. These findings highlight the superiority of the proposed329

DSBS approach over E2E-HSI.330

A.2. Comparison with Task-Independent and Task-Based Band Selec-331

tion Methods332

To evaluate the performance of the proposed DSBS framework,333

it is compared against several State-Of-The-Art (SOTA) BS meth-334

ods. These include deep learning-based approaches, such as335

BS-Nets-FC [24], BS-Net-Conv [24], Dropout CAE [26], and336

E2E-HSI [10], as well as traditional methods such as RL [25],337

RDFBSS [37], MLBS [11], NC-OC-IE [19], NC-OC-MVPCA [19],338

and TSC-OC-FDPC [38]. The evaluation is performed on the339

3 selected datasets using 10 selected spectral bands and four340

classifiers: CNN, FC, KNN, and SVM. Table 3 reports the clas-341

sification performance of the proposed DSBS relative to these342

methods.343

In the Indian Pines dataset, DSBS achieves the highest perfor-344

mance in all three metrics (OA, AA, and κ) for most classifiers.345

Table 2. Classification results on the Indian Pines dataset us-
ing 10 selected bands under different ablation settings. The
effects of the binarization function (bin) and regularization
exponent p are evaluated. Best results are in bold green, and
second-best in blue underline

Method
Ablation

OA (↑) AA (↑) κ × 100 (↑)
Bin Reg

E2E-HSI [36] ✗ 2 65.39 53.20 60.33

DSBS

✓ 2 72.56 65.19 68.70

✓ 1 73.96 66.12 70.28

✓ 0.5 74.18 66.23 70.58

For example, DSBS reaches 74.18% OA with CNN and 73.43%346

with SVM, outperforming the second-best E2E-HSI and NC-OC-347

IE. In terms of κ, DSBS also leads with values of 70.58 CNN,348

68.84 FC, and 69.72 SVM. These results demonstrate the robust-349

ness of the model under limited band configurations. For Pavia350

University, DSBS again outperforms all baselines in most sce-351

narios. It obtains the highest OA in every classifier: 90.51%352

(CNN), 90.42% FC, 86.47% KNN, and 90.66% (SVM). Further-353

more, DSBS achieves the best AA in machine learning methods354

with 83.80% KNN and 88.25% SVM. The κ scores are also highest355

for CNN and FC, further supporting the method’s consistent per-356

formance across classification backbones. In the Salinas dataset,357

DSBS maintains top performance across most of the metrics and358

classifiers. It achieves 90.79 − 91.74% OA, 93.21 − 94.75 AA, and359

κ × 100 values up to 90.79, surpassing strong baselines such as360

RDFBSS and NC-OC-IE.361

Figure 3 shows the classification maps generated for each362

dataset. The results obtained with DSBS exhibit improved spa-363

tial consistency and fewer classification artefacts compared to364

conventional BS methods. These visual results align with the365

observed improvements in OA, AA, and κ × 100, demonstrat-366

ing the model’s capacity to preserve relevant spectral–spatial367

structures using a reduced number of bands.368

A.3. Number of selected bands369

To analyse the impact of the number of selected bands on classifi-370

cation accuracy, the Indian Pines dataset is used. The evaluation371

considers deep learning-based BS methods, including BS-Nets-372

FC [24], BS-Nets-Conv [24], Dropout CAE [26], E2E-HSI [10],373

and the proposed DSBS. These methods are assessed using two374

classifiers (CNN and SVM) with varying band configurations375

B = {5, 10, 15, 20, 50, 100}. Figure 4 shows the OA results ob-376

tained on the Indian Pines dataset. DSBS consistently outper-377

forms all other methods across all selected bands, with the most378

significant improvements observed in low-band regimes B < 20,379

demonstrating that our method provides superior performance,380

especially when a reduced number of spectral bands is available.381

Fig. 4. OA performance of band selection methods on the
Indian Pines dataset using varying numbers of selected
bands. . Results are shown for CNN and SVM classifiers with
B ∈ {5, 10, 15, 20, 50, 100}.

B. Material Segmentation Task382

To extend the applicability of the proposed DSBS framework383

beyond classification, the method was evaluated on a material384

segmentation task. In this context, the goal is to segment objects385

such as concrete, vegetation, metal, and glass using a reduced386

number of spectral bands.387
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Table 3. Classification performance using 10 selected bands across classifiers and datasets. Results are reported for OA, AA, and
κ × 100 using CNN, FC, KNN, and SVM. Best results are in bold green, and second-best in blue underline

Dataset Method
OA (↑) AA (↑) κ × 100 (↑)

CNN FC KNN SVM CNN FC KNN SVM CNN FC KNN SVM

In
di

an
Pi

ne
s

TRC-OC-FDPC [19] 66.00 70.01 62.63 71.50 57.59 64.85 51.06 66.73 61.16 65.88 57.18 67.55
RDFBSS [37] 62.32 64.73 57.59 62.52 54.44 59.99 47.50 59.39 56.80 59.71 51.22 57.25

NC-OC-IE [19] 70.38 70.96 64.90 70.62 64.99 65.35 52.36 67.75 66.12 66.82 59.69 66.55
NC-OC-MVPCA [19] 71.83 70.16 64.40 69.62 65.08 63.57 51.89 67.03 67.83 65.83 59.11 65.43

BS-Nets-FC [24] 66.65 64.70 60.04 64.64 60.28 56.67 47.21 59.75 61.82 59.58 54.06 59.67
BS-Nets-Conv [24] 70.24 67.97 55.03 66.69 60.54 58.71 44.37 58.09 66.13 63.46 48.42 62.10
Dropout CAE [26] 64.88 65.46 58.70 64.41 59.07 59.23 47.28 59.89 59.88 60.47 52.59 59.49

E2E-HSI [10] 65.39 66.29 60.38 65.45 53.20 54.92 46.74 58.27 60.33 61.33 54.60 60.58
DSBS 74.18 72.80 66.40 73.43 66.23 64.46 53.38 68.30 70.58 68.84 61.46 69.72

Pa
vi

a
U

ni
ve

rs
it

y

TRC-OC-FDPC [19] 79.86 81.46 78.72 82.33 78.20 78.99 75.17 77.92 73.12 75.08 71.11 75.71
NC-OC-MVPCA [19] 80.85 81.52 79.14 82.55 79.32 79.76 75.62 78.06 74.39 75.30 71.68 76.01

NC-OC-IE [19] 79.76 81.21 78.98 82.44 77.78 78.75 74.28 79.26 79.25 74.67 71.47 75.84
RDFBSS [37] 85.25 85.88 79.42 87.35 82.20 83.36 74.22 84.11 80.34 81.23 72.09 83.08

BS-Nets-FC [24] 84.77 86.46 83.05 87.77 82.45 84.99 79.39 84.63 79.73 82.09 77.08 83.51
BS-Nets-Conv [24] 82.91 83.29 79.91 85.46 80.07 80.45 74.73 81.59 77.18 77.65 72.72 80.38
Dropout CAE [26] 84.45 86.12 83.34 88.07 82.12 83.33 79.45 84.55 79.66 81.67 77.43 83.98

E2E-HSI [10] 89.76 90.16 86.11 89.95 88.19 89.03 83.33 87.24 86.33 86.98 81.22 86.53
DSBS 90.51 90.42 86.47 90.66 87.95 88.02 83.80 88.25 87.35 87.22 81.71 87.54

Sa
li

na
s

TRC-OC-FDPC [19] 88.83 89.07 87.21 90.66 92.76 92.70 92.26 94.29 87.52 87.81 85.76 89.57
NC-OC-MVPCA [19] 88.89 89.54 87.72 91.65 93.50 93.08 92.76 95.27 81.63 88.33 86.32 90.69

NC-OC-IE [19] 89.00 89.85 87.88 91.59 93.01 93.91 92.75 95.17 87.74 88.69 86.28 90.62
RDFBSS [37] 88.64 90.35 88.22 90.99 93.68 94.12 93.23 94.63 87.36 89.23 86.88 87.95

BS-Nets-FC [24] 88.85 89.30 87.57 91.00 93.46 93.01 92.81 95.09 87.60 87.50 86.16 89.96
BS-Nets-Conv [24] 88.06 88.94 86.19 90.34 92.42 92.90 91.26 94.34 86.66 87.67 84.61 89.23
Dropout CAE [26] 88.25 89.19 87.03 90.59 93.19 93.44 92.58 94.77 86.90 87.95 85.55 89.50

E2E-HSI [10] 88.89 89.85 87.33 90.62 93.43 94.02 92.75 94.73 87.62 88.67 85.89 89.53
DSBS 90.79 88.31 88.62 91.74 94.75 93.21 93.50 95.49 89.72 87.02 87.30 90.79

Dataset. The LIB-HSI dataset [31] was used for this taks. It388

was captured using the Specim IQ handheld hyperspectral cam-389

era (Specim, Spectral Imaging Ltd.), covering the 400 to 1000 nm390

spectral range with a spatial resolution of 512 × 512 pixels and391

204 spectral bands. The dataset comprises 513 spectral images392

of building facades in a light industrial environment. Each pixel393

is labeled with one of 44 material classes. To minimize the ef-394

fects of illumination variability, all images were acquired under395

shaded or overcast conditions. For computational efficiency, the396

images were downsampled to 256 × 256 pixels while preserving397

the discrete class annotations. The dataset was divided into 393398

paired samples for training, 45 for validation, and 75 for testing.399

Models. Following the protocol described in [31], a Fully400

Convolutional Network (FCN) based on the ResNet-50 back-401

bone was employed for segmentation. The input layer of the402

network was modified to match the specific number of spectral403

bands. The network processes full spectral images F ∈ RL×MN
404

and produces a segmentation map c ∈ RC×MN , as defined in405

Eq. (13). To ensure consistency with the original training proce-406

dure, a reduce-on-plateau learning rate scheduler was used, with407

a patience threshold of 15 epochs. The training setup included408

an initial learning rate of 10−3 and a batch size of 8. Finally, the409

parameter to control the number of selected bands is ρ = 0.05.410

Metrics. Material segmentation was evaluated using four411

metrics: Focal Loss, Cross-entropy (CE), Intersection over Union412

(IoU), and the Dice Coefficient. These metrics capture different413

aspects of segmentation quality, including class imbalance and414

region-level overlap between predicted and ground-truth labels.415

IoU quantifies the ratio between the predicted and ground-416

truth regions as417

IoU =
|P ∩ G|
|P ∪ G| , (17)

where P is the set of pixels predicted as belonging to a class, and418

G is the corresponding ground-truth set. The Dice Coefficient,419

closely related to IoU, measures the overlap between prediction420

and ground-truth. It is defined as421

Dice Coefficient =
2 × |P ∩ G|
|P|+ |G| , (18)

where |P| and |G| are the total number of predicted and ground-422

truth pixels for the target class, respectively. The Dice score is423

particularly relevant in scenarios with imbalanced class distribu-424

tions.425
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Fig. 3. Visual Classification Results with OA metric on the Indian Pines, Pavia University, and Salinas datasets. From left to
right: false-color RGB image, classification maps from task-independent methods (BS-Nets-FC, BS-Nets-Conv, Dropout CAE),
task-based methods (E2E-HSI, DSBS), and the ground-truth map. Estimated maps correspond to CNN-based classification. Each
reported result corresponds to the best OA performance for each method across 5 runs.

B.1. Segmentation Performance Varying Number of Bands.426

The DSBS framework is evaluated in the material segmentation427

setting, where it can adapt to different tasks by integrating the428

BS optical encoder. As no prior BS methods have addressed429

segmentation, comparisons are made against the baseline from430

[31], which uses full-spectrum bands with 204 bands and RGB431

images with 3 channels. Additional experiments are conducted432

using the proposed method with B = {1, 3, 10} spectral bands.433

As shown in Table 4, the DSBS method was evaluated with434

Table 4. Performance of the band selector optical encoder on
material segmentation using different numbers of selected
bands. Metrics include Focal loss, Cross-Entropy (CE), Dice
score, and Intersection over Union (IoU). The selector was
configured with ϕ ∈ {0, 1}L and ρ = 0.05. Best results are in
green bold, and second-best results in blue underline.

Method Bands Focal (↓) CE (↓) Dice (↑) IoU (↑)

RGB 3 0.1932 0.7482 73.57 58.66

DSBS

1 0.2405 0.8374 73.81 58.88

3 0.1688 0.7231 75.51 60.95

5 0.1560 0.6976 76.02 61.66

10 0.1542 0.6926 76.04 61.64

HSI 204 0.1638 0.7126 75.14 60.58

selected spectral bands 10, 5, 3 and 1. Using 10 bands, the seg-435

mentation performance approaches that of the full spectrum436

baseline (204 bands), with an IoU of 61.64% compared to 60.58%,437

a difference of only 1.06%. This result indicates that the selec-438

tion of a small number of bands for the segmentation task can439

be compared to the input of the full spectrum. With 5 bands,440

the IoU reaches 61.66%. Therefore, these findings demonstrate441

that the DSBS method can preserve segmentation quality while442

reducing spectral dimensionality with a DICE of 76. 04%, which443

is beneficial for systems with limited computational resources.444

When reducing the number of selected bands to 3, the DSBS445

method achieves a Dice score of 75.51% and an IoU of 60.95%,446

both of which exceed the RGB baseline (Dice = 73.57%, IoU447

= 58.66%). The improvement in IoU is approximately 2.29%,448

and in Dice 1.94%. Therefore, learnt band selection provides449

better feature representation than fixed RGB channels. The three450

selected bands correspond to central wavelengths of 400 nm,451

747 nm, and 918 nm. To provide a visual representation of452

these new bands, Figure 5 presents both the original RGB image453

and a false RGB image constructed using the newly selected454

bands, highlighting two distinct points. As shown, two pixels455

in the original RGB image, which share the same RGB values456

but belong to different classes, are clearly separated in the new457

image. This demonstrates a significant visual improvement458

achieved by the proposed method. In the case of using only one459

band, DSBS achieves an IoU of 58.88%, nearly matching the RGB460



Research Article 8

Fig. 5. Comparison of RGB images, DSBS selected spectral
bands, and material segmentation maps for three scenes.
Each row shows one scene with sampled points. Each row
shows one scene with sampled points. R, G, B indicate red,
green, and blue channel intensities; D represents the spectral
difference between paired points. RGB values (left), falsr RGB
images comstructed using the three selected bands (center),
and material segmentation map with coordinates (right).

baseline with a deviation of just 0.22%. This result confirms that461

even minimal spectral content, when optimally selected, can462

encode task-relevant information.463

B.2. Adapted Band Selection Methods for Material Segmentation464

This section evaluates the SOTA band selection methods using465

10 selected bands, such as BS-Nets-FC [24], BS-Net-Conv [24],466

Dropout CAE [26], and E2E-HSI [10] on the material segmen-467

tation task for 10 spectral bands. As these methods were origi-468

nally developed for classification, they were adapted, and the469

selected bands were used for training the segmentation model470

from scratch. Unique exception is the E2E-HSI method, which471

Table 5. Classification performance across various classifi-
cation methods using 10 selected bands, evaluated across
different band selection methods for Material Segmentation.
The best results are highlighted in green bold, and the second-
best results are in blue underline.

Method Focal (↓) CE (↓) Dice (↑) IoU (↑)

BS-Nets-FC 0.1646 0.7115 74.27 59.47

BS-Nets-Conv 0.1913 0.7672 73.63 58.58

Dropout CAE 0.1611 0.7048 75.37 60.84

E2E-HSI 0.1555 0.6986 75.74 61.21

DSBS 0.1542 0.6926 76.04 61.64

was trained with the E2E framework. Quantitative results in472

Tab. 6 show that the proposed DSBS method achieves supe-473

rior performance across all segmentation metrics, confirming its474

adaptability and effectiveness beyond classification tasks.475

Figure 6 illustrates qualitative segmentation results for three476

representative samples from the LIB-HSI dataset, comparing477

task-independent and task-based band selection methods. The478

DSBS method yields the most accurate segmentation maps479

across all samples, closely matching the ground-truth bound-480

aries and material distributions. In particular, it captures fine481

structural details and material transitions with greater consis-482

tency than competing methods. Task-independent approaches483

such as BS-Nets-FC, BS-Nets-Conv, and Dropout CAE exhibit484

fragmented or oversmoothed outputs, while E2E-HSI fails to485

resolve certain class boundaries. The reported IoU values fur-486

ther support this observation, with DSBS consistently achieving487

the highest scores, reaching up to 82.37%. These results high-488

light the advantages of task-driven band selection in improving489

segmentation quality while reducing the number of required490

spectral bands.491

6. CONCLUSIONS AND FUTURE WORK492

This work introduces DSBS, an E2E framework that integrates493

spectral BS with SI tasks. The DSBS framework provides an effi-494

cient solution for spectral imaging applications by incorporating495

a fully differentiable BS optical encoder, designed to identify and496

utilize the most relevant spectral bands for task-specific tasks,497

such as material segmentation and classification. By employing498

a discretization function and custom norm regularization, DSBS499

optimizes the selection of bands for each specific task, reducing500

the need for full-spectrum data. This results in decreased hard-501

ware costs and acquisition times, while achieving performance502

that is either comparable to or exceeds traditional full-spectrum503

imaging methods using only a fraction of the spectral bands.504

Future work can expand DSBS to other tasks, such as object505

detection and anomaly detection. Moreover, incorporating in-506

terpretability analyses into DSBS may offer deeper insights into507

how specific spectral bands contribute to various tasks, improv-508

ing transparency and making the framework more suitable for509

decision-critical applications.510
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