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Abstract—This study presents an automated system for classi-
fying the fermentation levels of cocoa beans using convolutional
neural networks, specifically employing YOLO-based object
detection models. RGB images of cocoa beans, which were cut
using a guillotine to expose their internal structure, were analyzed
and manually labeled by experts according to the NTC 1252:2021
standard. A dataset of 19 high-resolution images, containing
approximately 1,850 annotated beans, was used for both training
and evaluation. Four versions of YOLOv8 (n, s, m, l) were tested,
with YOLOv8m demonstrating the best overall performance,
achieving an Intersection over Union (IoU) of 0.6522, accuracy of
0.6817, recall of 0.6558, and an F1-score of 0.6685. Comparative
tests with earlier YOLO versions (YOLOv5 to YOLOv7) confirmed
YOLOv8m as the most efficient model for this task. In addition, it
achieved a competitive inference time of 89.87 ms per image. These
results highlight the potential of deep learning and computer
vision techniques to automate the classification of cocoa bean
fermentation levels, providing a faster, more objective alternative
to traditional manual inspection methods.

Index Terms—Cocoa, Cocoa fermentation, Classification, Image
processing, Computer vision, Machine learning models, YOLO.

I. INTRODUCTION

Cocoa bean is a strategic product for the Colombian economy,
directly impacting more than 25,000 families dedicated to its
production [1]. During the last four decades, its cultivation
has experienced sustained growth, with approximately 95% of
the grains traded in global markets [2]. Within the chocolate
industry, the quality of cocoa directly influences the sensory
characteristics of the final product, such as flavor, aroma and
texture [3]. Consequently, an accurate classification of cocoa
beans is a requirement to meet the quality standards demanded
by buyers and to ensure competitiveness in the international
market [4].

A determining factor in cocoa quality is the level of
fermentation of the beans. Fermentation is essential to develop
the compounds responsible for the sensory profile of chocolate,
allowing the formation of aroma and flavor precursors [5].
In Colombia, the evaluation of the fermentation level of
cocoa beans is conducted according to the technical standard
NTC 1252:2021, which involves the visual inspection of cut
cocoa beans using a guillotine [6]. This standard assesses
characteristics such as the color of the cotyledon (ranging from
purple to brown, with well-fermented beans typically showing
a uniform brown color) and the shape or structure of the
bean, including the presence of slaty, moldy, or insect-damaged
beans, which indicate poor fermentation or contamination [7].
However, this method has limitations, as it depends on the
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experience of the evaluator and may generate inconsistencies
in the classification [8]. In addition, the lack of a standardized
protocol and the limited availability of experts make it difficult
to apply the process homogeneously in different producing
regions.

To address these shortcomings, this study proposes a com-
puter vision-based methodology for the automatic classification
of cocoa bean fermentation levels. A custom dataset was
created using high-resolution RGB images of cocoa beans,
annotated manually by cocoa quality experts following the
NTC 1252:2021 standard. In total, 1,850 individual annotations
were obtained from 19 images. These labeled instances were
used to train and evaluate object detection models from the
YOLO family. By fine-tuning pre-trained YOLO architectures,
particularly YOLOv8, the system was able to detect and
classify beans into three fermentation categories with promising
performance, laying the groundwork for real-time, automated
quality control in cocoa processing environments [9].

II. BACKGROUND

A. Norm NTC1252:2021

Colombian Technical Standard NTC 1252:2021 establishes
the quality requirements for dried and fermented cocoa beans
marketed in Colombia. This standard is a guide to guarantee the
standardization of cocoa quality in the production, marketing
and export processes [10]. The main criteria evaluated include
the level of grain fermentation, moisture content, the presence
of physical defects (such as moldy, sprouted or contaminated
grains) and physical characteristics such as grain size and
weight [11].

An important aspect of the standard to be considered is the
classification of the level of fermentation, which determines
whether a cocoa bean is well fermented, partially fermented, or
poorly fermented [12]. According to the visual criteria outlined
in NTC 1252:2021, well-fermented beans typically exhibit a
uniform brown color in the cotyledon and a loosened internal
structure, indicating good biochemical changes. Partially fer-
mented beans may show a mix of brown and purple coloration,
with a more compact texture. In contrast, poorly fermented
beans are usually dark purple or slaty in color, with a hard,
compact structure, reflecting insufficient fermentation and lower
flavor development.

B. YoloV8

1) Architecture: YOLO is a deep neural network architecture
developed for object detection tasks in images. Unlike other
traditional approaches such as Regions with Fast Convolutional
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Neuronal Networks (Fast R-CNN), which separate the local-
ization and classification process into multiple stages, YOLO
performs both tasks simultaneously in a single pass over the
image, enabling it to achieve significantly higher processing
speeds. This feature makes YOLO an ideal tool for real-time
applications where speed and efficiency are paramount [13].

The YOLO architecture is based on dividing the input
image into a grid, and each cell of this grid is responsible for
predicting one or more bounding boxes and the probabilities
of the classes associated with the detected objects [14].

Mathematically, each cell i predicts B bounding boxes, and
for each box, a confidence score is computed as:

Confidencei = Pr(Objecti) · IoUtruth
pred,i, (1)

Here, Pr(Objecti) is the probability of an object being
present in cell i, and IoUtruth

pred,i is the intersection-over-union
between the predicted and ground truth bounding boxes.

Additionally, YOLO predicts class conditional probabilities
Pr(Classc|Objecti) for each class c. The final class-specific
confidence score is then calculated as:

Scorei,c = Pr(Classc|Objecti) · Confidencei, (2)

where Pr(Classc|Objecti) is the conditional probability that the
object detected in cell i belongs to class c. This formulation
allows YOLO to detect and classify multiple objects in a
single forward pass, making it highly efficient for real-time
applications.

2) YOLO Loss Function Components: The localization loss
quantifies how accurately the predicted bounding boxes match
the ground truth boxes. It focuses on minimizing the error in
the predicted center coordinates (x, y) and dimensions (w, h)
of each bounding box.

The localization loss is defined as:

Lloc = λcoord

S2∑
t=0

B∑
j=0

⊮obj
tj

[
(xt − x̂t)

2 + (yt − ŷt)
2
]

+λcoord

S2∑
t=0

B∑
j=0

⊮obj
tj

[
(
√
wt −

√
ŵt)

2 + (
√
ht −

√
ĥt)

2

]
,

(3)

here, λcoord is a weighting factor that emphasizes localization
accuracy, and ⊮obj

tj is an indicator function that equals 1 if the
object is present in the corresponding grid cell and bounding
box predictor.

The confidence loss measures the model’s certainty about the
presence or absence of an object in a given cell and bounding
box. It penalizes incorrect predictions for both detected and
undetected objects.

Lconf =

S2∑
t=0

B∑
j=0

⊮obj
tj (Ct − Ĉt)

2

+λnoobj

S2∑
t=0

B∑
j=0

⊮noobj
tj (Ct − Ĉt)

2.

(4)

In this expression, Ct represents the predicted confidence
score, while Ĉt denotes the ground truth. The term λnoobj
reduces the impact of cells where no object is present.

The classification loss evaluates the discrepancy between
the predicted class probabilities and the actual class labels for
the detected objects.

Lcls =

S2∑
t=0

⊮obj
t

∑
c∈classes

(pt(c)− p̂t(c))
2, (5)

here, pt(c) and p̂t(c) represent the predicted and true class
probabilities, respectively, for class c in cell t.

C. Total Loss

The total loss function Ltotal is the sum of all three
components:

Ltotal = Lloc + Lconf + Lcls. (6)

This composite loss function enables YOLO models to simulta-
neously optimize for object localization, confidence estimation,
and classification during training.

III. METHODOLOGY

The proposal methodology consisting of several steps that
allowed us to build, train, and evaluate the model in an orga-
nized manner. Each step ensured the final system’s performance.
Specifically, we carried out step a), data collection for dataset
creation; step b), labeling and classification of the data; step c),
testing and selection of the model architecture; step d), training
and hyperparameter optimization; and step e), evaluation and
analysis of the obtained metrics (Figure 1).

A. Dataset

To train the model, a database was created with RGB images
of dried cocoa beans, both open and closed, as shown in
Figure 2. The acquisition process was conducted under uniform
lighting conditions to reduce shadows and color distortions that
could affect model performance. The images were captured
using an acquisition system, the data were organized and
labeled according to their level of fermentation: green beans are
well fermented, red beans are poorly fermented and blue beans
are partially fermented, following the parameters established
in the technical standard NTC 1252:2021.

B. Model training and classification

The detection and classification of cocoa beans were carried
out using object detection models from the YOLO family.
The objective was to detect individual beans and classify
them into three categories based on their fermentation level:
well fermented (green), poorly fermented (red), and partially
fermented (blue), following the NTC 1252:2021 standard.

A pre-trained YOLO model was used as the base architecture,
and fine-tuning was performed using a custom dataset of
cocoa beans. This approach allowed the model to leverage
learned features from large scale datasets while adapting
specifically to the characteristics and requirements of cocoa
bean classification.

The beans were manually labeled by a group of cocoa quality
experts (see Figure 3) using a cocoa guillotine to expose the
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Figure 1: Illustration of the proposed workflow for fermentation level assessment using YOLOv8. Cocoa bean samples are
input into the model, which performs object detection and classification to assign a fermentation level. The loss function used
for model optimization combines localization loss, confidence loss, and classification loss. The model predicts one of three
classes—well fermented (W, green), poorly fermented (P, red), or partially fermented (S, blue) as indicated by the bounding
box colors surrounding the classified beans.

internal structure of each bean. Each annotation was cross-
verified by at least two evaluators to ensure accuracy and
consistency.

Model training was performed in a environment using RGB
images at a resolution of 640×640 pixels. each containing
approximately 100 cocoa beans, 50 whole beans cut in half
to expose their internal structure, this resulted in around 1900
annotated instances across the dataset, each individual bean
was annotated and treated as a separate training instance. This
allowed the object detection model to learn from approximately
1900 labeled examples, significantly increasing the effective
dataset size despite the small number of images. The dataset
was split into training and validation sets (90% and 10%,
respectively).

Due to computational constraints and the time required to
train the model for 300 epochs per fold, k-fold cross validation
was not applied. Instead, a fixed 90/10 split was used, ensuring
a representative sample of all classes in both training and
validation sets.

Figure 2: The image on the left shows the original unprocessed
view of the cocoa beans. The right image displays the classified
beans: green for well-fermented, blue for partially fermented,
and red for poorly fermented.

The training process lasted for 300 epochs, with a batch
size of 19 and an adaptive learning rate to enhance conver-
gence. Data augmentation techniques such as rotations and
brightness changes were applied to improve generalization.
Additionally, hyper parameters including learning rate, batch
size, and model depth were adjusted to optimize performance
on the classification task. These hyperparameters were defined
empirically through iterative experimentation. Multiple training
sessions were conducted testing different values, and the final
configuration was selected based on the combination that
consistently yielded the best results across evaluation metrics.

The experiments were carried out using Google Colab with
a Python 3 runtime, utilizing a GPU T4 accelerator. The
environment provided access to 12.7 GB of RAM, with a
system usage of approximately 10.2 GB of RAM and 37 GB
of disk at the time of execution.

Figure 3: Cocoa bean fermentation classification: The left image
shows annotated beans with color-coded quality (green = good,
blue = partial, red = bad). The right image displays the table
used to classify cocoa bean lots.)
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C. Metrics

To evaluate the performance of the model, standard metrics in
object detection were used, such as: Precisión, Recall, F1-Score
and IoU. Analysis of these metrics identified opportunities for
improvement in the model architecture and in the quality of
the data set [15].

Precision: Measures the proportion of correctly predicted
positive instances, reflecting the model’s accuracy in identifying
relevant cases.

Recall: Indicates the model’s ability to detect all actual
positive instances, highlighting its sensitivity to the target class.

F1-Score: Represents the harmonic mean of precision and
recall, useful for assessing overall performance, especially with
imbalanced data.

IoU (Intersection over Union): Quantifies the overlap be-
tween the predicted and actual object locations, evaluating
spatial accuracy in object detection.

Precision =
TP

TP + FP
, (7)

Recall =
TP

TP + FN
, (8)

F1 = 2 · Precision · Recall
Precision + Recall

, (9)

IoU =
Apred ∩Atrue

Apred ∪Atrue
, (10)

where: TP (True Positives) are correctly detected objects; FP
(False Positives) are incorrect detections; FN (False Negatives)
are real objects that were not detected; Apred is the area of the
predicted bounding box; Atrue is the area of the ground truth
box; ∩ represents the intersection between both areas, and ∪
their union.

IV. IMPLEMENTATION AND RESULTS

To evaluate the feasibility of the proposed system, several
YOLO models were trained and tested using images of open
cocoa beans captured under controlled conditions and labeled
according to NTC 1252:2021. The goal was to automatically
detect the beans and classify their level of fermentation as well-
fermented, poorly fermented, or partially fermented, evaluating
both the accuracy and efficiency of the system.

As illustrated in Figure 4, the ”partial” class achieved
the highest area under the Precision–Recall curve (0.755),
indicating that the model most reliably distinguishes partially
fermented beans. The ”poor” class followed in performance
(0.631), while the ”well” class had the lowest value (0.584)),
suggesting that well-fermented beans are the most challenging
to consistently recognize. This highlights the need to increase
and diversify the training samples for well-fermented beans.

The precision-recall curve shows the performance of the
model across different thresholds. The YOLOv8m model
achieved the best trade-off between precision and recall,
maintaining higher values throughout the curve compared to
other tested versions.

Figure 4: Precision-Recall curve by class: “partially” (0.755),
‘Poorly’ (0.631), “Well” (0.584) and average of all classes (blue
line), showing the optimal trade-off of YOLOv8.

An initial comparative evaluation was carried out between
medium-sized models from different YOLO versions, ranging
from version 5 to the latest, YOLOv11. As shown in Table I, the
yolov8m model stood out for its superior overall performance.
This result suggests that version 8 continues to hold an
advantage in specific tasks such as the visual classification
of cocoa beans.

Subsequently, four variants of YOLOv8 (n, s, m, l) were
tested to determine which offered the best balance between
performance and computational efficiency. The results, summa-
rized in Table II, once again highlight the strong performance
of yolov8m, which achieved a precision of 0.6817, an IoU@0.5
of 0.6522, and an F1-score of 0.6685. These values demonstrate
its ability to accurately identify fermented and unfermented
cocoa beans, achieving a solid balance between recall (0.6558),
precision, and overall accuracy. Additionally, yolov8m main-
tained this high performance with an inference time of 89.87
milliseconds per image, indicating an efficient processing time
suitable for real-time applications.

Smaller models (YOLOv8n, YOLOv8s) achieved high recall

Table I: Results of the YOLO-m models. Several YOLO
versions were evaluated, from YOLOv5 to YOLOv11. The
table shows performance metrics including IoU, Accuracy,
Recall, and F1-Score. The best results obtained among the
tested models are highlighted in bold.

Model IoU@0.5 Accuracy Recall F1-Score Time [ms]

yolov5m 0.6722 0.6037 0.6156 0.6096 57.59
yolov8m 0.6522 0.6817 0.6558 0.6685 89.87
yolov5m 0.6722 0.6037 0.6156 0.6096 57.59
yolov9m 0.5750 0.6111 0.5864 0.5985 116.06
yolov10m 0.6422 0.5390 0.7012 0.6095 38.11
yolov11m 0.6867 0.6460 0.6069 0.6258 53.22
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Table II: Results of the YOLOv8 models. Several YOLOv8
variants were evaluated, including yolov8n, yolov8s, yolov8m,
and yolov8l. The table presents the performance metrics:
Intersection over Union (IoU), Accuracy, Recall, and F1-Score.
The best results obtained among the tested configurations are
highlighted in bold.

Model IoU@0.5 Accuracy Recall F1-Score Time [ms]

yolov8n 0.5436 0.4508 0.7411 0.5606 39.41
yolov8s 0.5946 0.4844 0.7266 0.5813 68.71
yolov8m 0.6522 0.6817 0.6558 0.6685 89.87
yolov8l 0.7013 0.4951 0.7821 0.6064 77.87

values but at the cost of precision, leading to more false
detections. In contrast, YOLOv8m achieved a solid balance
with a precision of 0.6817, recall of 0.6558, and an F1-score
of 0.6685, making it a suitable option for applications where
both classification accuracy and detection coverage are critical.
Moreover, it maintained this performance with an inference
time of 89.87 milliseconds per image, offering a good trade-off
between accuracy and computational efficiency.

The experiments performed demonstrate that the use of RGB
images combined with deep learning models such as YOLOv8
allows for highly accurate classification of fermentation levels
in cocoa beans, as illustrated in Figure 5. The proposed solution
not only overcomes the limitations of the manual approach, but
also lays the foundation for the implementation of automatic
quality control systems in industrial or rural environments, with
the possibility of real-time integration.

Figure 5: Detection and classification of beans by the model:
red boxes = poorly fermented, blue = partially fermented, green
= well fermented.

V. CONCLUSIONS

YOLOv8m achieved the highest performance in the auto-
matic classification of cocoa bean fermentation levels, with an
IoU of 0.6522, accuracy of 0.6817, recall of 0.6558, and an F1-
score of 0.6685. It outperformed previous YOLO versions
(v5 to v7) and other YOLOv8 variants, demonstrating a

solid balance between detection coverage and classification
accuracy. Additionally, it maintained this performance with an
inference time of 89.87 milliseconds per image, highlighting
its computational efficiency. The ”partially fermented” class
obtained the highest area under the precision–recall curve
(0.755), followed by the ”poorly fermented” class (0.631), while
the ”well-fermented” class was the most difficult to identify
(0.584), indicating the need to improve dataset representation
for this category. The results support the use of computer
vision models with RGB images to replace traditional visual
inspection, offering a more objective and replicable system.
Future work should include expanding the dataset with more
cocoa varieties and environmental conditions, integrating
multispectral or hyperspectral imaging to capture internal
features [16], and evaluating the model under field conditions
to support its deployment in automated quality control systems.

REFERENCES

[1] J. Puello-Mendez, P. Meza-Castellar, L. Cortés, L. Bossa, E. Sanjuan,
H. Lambis-Miranda, and L. Villamizar, “Comparative study of solar
drying of cocoa beans: Two methods used in colombian rural areas,”
Chemical Engineering Transactions, vol. 57, 2017.

[2] Swiss Platform for Sustainable Cocoa. (2024) Cocoa facts and figures.
Accessed: 2025-03-31. [Online]. Available: https://www.kakaoplattform.
ch/about-cocoa/cocoa-facts-and-figures

[3] A. C. Aprotosoaie, S. V. Luca, and A. Miron, “Flavor chemistry of
cocoa and cocoa products—an overview,” Comprehensive Reviews in
Food Science and Food Safety, vol. 15, no. 1, pp. 73–91, 2016.

[4] J. Cadby and T. Araki, “Towards ethical chocolate: multicriterial
identifiers, pricing structures, and the role of the specialty cacao industry
in sustainable development,” SN Business & Economics, vol. 1, no. 3,
p. 44, 2021.
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