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Abstract: Background: Glioblastoma multiforme (GBM) is an aggressive brain tumor with
a poor prognosis. Traditional diagnosis relies on invasive biopsies, which pose surgical
risks. Advances in artificial intelligence (AI) and machine learning (ML) have improved
non-invasive GBM diagnosis using magnetic resonance imaging (MRI), offering potential
advantages in accuracy and efficiency. Objective: This review aims to identify the method-
ologies and technologies employed in AI-based GBM diagnostics. It further evaluates the
performance of AI models using standard metrics, highlighting both their strengths and
limitations. Methodology: In accordance with the preferred reporting items for systematic
reviews and meta-analyses (PRISMA) guidelines, a systematic review was conducted across
major academic databases. A total of 104 articles were identified in the initial search, and
15 studies were selected for final analysis after applying inclusion and exclusion criteria.
Outcomes: The included studies indicated that the signal T1-weighted imaging (T1WI)
is the most frequently used MRI modality in AI-based GBM diagnostics. Multimodal ap-
proaches integrating T1WI with diffusion-weighted imaging (DWI) and apparent diffusion
coefficient (ADC) have demonstrated improved classification performance. Additionally,
AI models have shown potential in surpassing conventional diagnostic methods, enabling
automated tumor classification and enhancing prognostic predictions.

Keywords: deep learning; machine learning; glioblastoma; tumors; magnetic resonance
imaging; precision medicine

1. Introduction
Glioblastoma Multiforme (GBM) is a devastating and incurable brain tumor with a

median overall survival of 15 months [1]. According to the World Health Organization
(WHO), gliomas are classified from grade I to IV based on histological and molecular
characteristics [2]. GBM, classified as a grade IV glioma, is the most invasive and treatment-
resistant type. Gliomas account for 81% of malignant brain tumors, and GBM represents
60% of these cases [3,4]. Although treatment strategies exist, the 15-month survival rate for
patients with GBM remains between 62% and 70% [5,6].

The clinical management of GBM involves safe surgical resection, which serves both
diagnostic and therapeutic functions. It allows for histopathological confirmation through
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biopsy and reduces tumor volume through resection. Techniques include stereotactic
needle biopsy, open craniotomy, and 5-ALA fluorescence-guided surgery [7]. However,
while surgery is used for diagnosis and tumor reduction, it presents limitations that may
influence subsequent treatment planning [8]. Surgical resection enables histopathological
diagnosis and tumor removal. In contrast, biopsy is used in patients with deep-seated
lesions, tumors in eloquent brain areas, or poor performance status [9].

Despite the limitations of stereotactic biopsies, tumor heterogeneity can be assessed by
sampling multiple regions within the lesion. Multiregional sampling has revealed distinct
clonal populations within a single tumor mass, highlighting the spatial genetic variability in
GBM. These findings underscore the importance of sampling strategy when characterizing
the molecular complexity of GBM in the context of individualized therapies [10]. Advances
in neuroimaging, including multiparametric magnetic resonance imaging (MRI), have
enabled the non-invasive assessment of tumor heterogeneity. Imaging biomarkers derived
from quantitative MRI data, combined with texture and spatial analysis, can identify
histologically distinct tumor subregions [11].

Following surgery, standard treatment includes chemoradiotherapy (CCRT) with
temozolomide [12]. In patients with an unmethylated MGMT promoter or a Karnofsky
performance status (KPS) below 70, radiotherapy (RT) alone may be used [13]. A diagnostic
challenge after treatment is distinguishing tumor recurrence from radiation necrosis (RN),
which develops within three years after RT. Both conditions appear similar on conventional
MRI, showing contrast-enhancing lesions and surrounding edema, making interpretation
and clinical decision-making difficult [14]. Since recurrence requires oncologic treatment
while RN may be managed conservatively, precise diagnosis is necessary. This limitation
has led to interest in MRI-based analysis as a complementary tool for diagnosis and
treatment selection. Studies have identified biomarkers such as TRPM2 ion channels and
TGF-β-related long non-coding RNAs (lncRNAs) as tools for non-invasive diagnosis and
prognosis in GBM [15,16]. In addition, early detection remains essential for initiating
appropriate treatment [17]. Although brain biopsy is the standard for diagnosis, it involves
surgical risk, economic cost, waiting time, and may produce incomplete assessments of
tumor heterogeneity [18,19].

To support non-invasive diagnosis, imaging modalities including MRI, perfusion imag-
ing, diffusion tensor imaging, magnetic resonance spectroscopy, and molecular imaging
have been applied [20]. Among these, MRI has been combined with artificial intelligence
(AI) techniques for diagnostic modeling. Deep-learning models applied to MRI data
classify brain pathologies, with studies reporting 98% precision in distinguishing GBM
from cerebral metastases [21]. MRI supports tumor classification, treatment monitoring,
and recurrence detection in clinical practice [3,22]. It also contributes to the non-invasive
evaluation of brain disease [23]. Imaging-based diagnosis guides therapeutic decisions,
as tumor subtypes vary in prognosis and require tailored approaches [24]. Radiomics en-
ables the extraction of quantitative features from medical images, including shape, texture,
and intensity, reflecting tumor characteristics [25]. AI models trained on imaging datasets
support detection, classification, and clinical decisions [24,26,27].
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This systematic review synthesizes developments in artificial intelligence-based sys-
tems for non-invasive glioblastoma diagnosis. It examines the performance of AI models
applied to MRI data, including diagnostic accuracy, classification strategies, and prognostic
potential. A specific emphasis is placed on identifying which MRI sequences provide the
most informative features for AI-based classification of GBM. This work highlights the
integration of radiomics with deep learning and presents an analysis of methodologies,
validation approaches, and clinical implementation. The review provides researchers and
clinicians with an overview of AI-based tools for GBM management.

2. Materials and Methods
This review was conducted in accordance with the guidelines outlined in “The

PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews” [28].
A systematic review of articles addressing the analysis of GBM using MRI and AI techniques
was undertaken.

2.1. Protocol and Registration

The protocol was executed in adherence to the PRISMA-P guidelines. It was prospec-
tively registered in the International Register of Systematic Reviews [29]. The initial reg-
istration was completed on 1 August 2024, with the most recent update recorded on
23 February 2025. The corresponding PROSPERO registration number is CRD42022368197.

2.2. Systematic Search

A systematic search was conducted on 1 August 2024, across the following databases:
PubMed, Web of Science, Scopus, and Google Scholar, covering the period from 1 January
2018 to 4 February 2025. The search strategy was designed to ensure comprehensive
coverage of relevant literature, incorporating key terms such as “Glioblastoma”, “Magnetic
Resonance Imaging”, “Machine Learning”, and “Deep Learning”, while explicitly excluding
terms such as “Surgical”, “Operative”, and “Treatment” to maintain a focus on GBM
diagnosis prior to surgical intervention. A Boolean logic combination was applied using
the NOT, AND, and OR operators, following a structured search string:

TITLE (glioblastoma OR gbm) AND TITLE (machine AND learning OR deep AND
learning) AND ABS (magnetic AND resonance AND imag OR irm) AND NOT ABS
(surgical OR operative OR treatment).

The following results were obtained:

• Scopus: 49 articles
• Web of Science: 31 articles
• PubMed: 23 articles
• Google Scholar: 1 article

The retrieved articles underwent a two-stage screening process based on predefined
eligibility criteria, following the PRISMA 2020 Statement. The initial search identified
a substantial number of publications related to cancer and AI. While several valuable
scientific contributions were identified, others were deemed irrelevant to the specific
objectives of this study. The review primarily focused on machine-learning approaches
based on MRI for GBM diagnosis, leading to the establishment of well-defined inclusion
and exclusion criteria for article selection.



Life 2025, 15, 643 4 of 14

Initially, titles and abstracts were screened to remove duplicates and exclude irrelevant
studies. Subsequently, full-text articles were evaluated to determine their suitability based
on the inclusion and exclusion criteria.

To enhance objectivity and reliability, the screening and selection process was con-
ducted independently by two reviewers, with discrepancies resolved through discussion
or by consulting a third reviewer in cases of disagreement. A PRISMA-compliant flow
diagram was used to illustrate the selection process, documenting the number of records
identified, screened, excluded, and included in the final synthesis. This approach ensured a
systematic, transparent, and reproducible selection of studies, strengthening the validity of
the review’s findings.

2.3. Inclusion Criteria

Inclusion criteria were defined to ensure that the systematic search remained strictly
focused on the application of AI techniques for the diagnosis of GBM. The following
inclusion criteria were applied in the review of the scientific literature:

• Scientific literature focused on artificial intelligence techniques.
• Scientific literature employed magnetic resonance imaging.
• Studies to address the diagnosis of GBM.
• Scientific literature exclusively of Quartils Q1 to Q2 from journals indexed in the

Journal Citation Report (JCR).

2.4. Exclusion Criteria

Exclusion criteria were implemented to eliminate topics that did not align with the
scope and objectives of this systematic review, including:

• Studies related to imaging techniques other than MRI.
• Evidence lacking sufficient methodological rigor or clinical relevance.
• Scientific literature in languages other than English.
• Editorials and other non-peer reviewed articles.
• Full-text not available.
• Studies conducted in animals.

2.5. Study Selection

Articles retrieved through systematic search were subjected to filtering based on
inclusion and exclusion criteria. Duplicate articles were removed and the abstract of
each article was examined to ensure compliance with the proposed inclusion criteria.
The articles selected for analysis in this systematic review were evaluated by the team
members according to the following flow chart (Figure 1).

2.6. Data Extraction

All selected articles were manually extracted and synthesized in a predefined form,
which included the following information: journals, quartiles, impact factor of the journal,
year, authors, samples, main experiment, country, purpose of the study, data source, types
of data, algorithms used, validation method and results (Table 1).
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Figure 1. PRISMA methodology flowchart.
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Table 1. Individual results from the selected articles.

Reference
Country

Year
Description

Sample Images Model Metric AUC

Pa
ti

en
t

D
W

I

T
1W

I

T
1C

A
D

S

C
ET

1W
I

T
2W

I

FL
A

IR AI
Exp. 1
Exp. 2
Exp. 3

[20]
JAPAN

2020

Initial machine-learning approach
using multi-sequence MRI textures

to differentiate glioblastoma
from metastases.

126 X X X X X SVM 0.92
0.72
0.73
0.86

[3]
CHINA

2019

Classification of glioma using
machine learning and delta-radiomic
features from dynamic susceptibility

contrast-enhanced MRI.

25 X X X X RF 0.94
—
—
—

[30]
USA
2021

Radiomics-based differentiation
between GBM and primary CNS lymphoma

using multiple MRI sequences and
machine-learning models.

94 X X X X X X
ML
RF,

SVM,
0.97

—
—
—

[26]
CHINA

2020

Comparative radiomics study for
GBM and primary CNS lymphoma

diagnosis using machine-learning classifiers.
138 X X X

LDA
SVM
LR

LDA: 0.978
SVM: 0.959
LR: 0.933

—
—
—

[25]
TAIWAN

2021

Multiparametric MRI-based radiomics
analysis for efficient tumor subregion

classification of glioblastoma.
54 X X X X RF

Necrosis: 93.6
Solid part: 90.4

Peritumoral tissue: 95.8
Edema: 0.904

—
—
—

[24]
CHINA

2019

Radiomics-based differentiation
of GBM from anaplastic oligodendroglioma

using advanced machine-learning techniques.
126 X LDA,

SVM

LDA + Dist. corr: 0.986
LDA + LASSO: 0.994
LDA + GBDT: 0.970

SVM + Dist. corr: 0.923
SVM + LASSO: 0.817

—
—
—

[31]
CHINA

2022

Automated machine learning for
image-based differentiation between

GBM and metastasis.
708 X X TPOT 0.867

—
—
—

[32]
CHINA

2021

Machine-learning analysis of MRI radiomics
for gliosarcoma vs. glioblastoma classification. 183 X X X

SVM,
AdaBoost,

RF
0.85

—
—
—

[33]
ITALY
2021

Deep-learning differentiation of
IDH status in glioblastoma using

multi-parametric MRI.
156 X X X X X X CNN

T1: 0.71
T2: 0.63

FLAIR: 0.74
MPRAGE: 0.62

ADC: 0.45

—
—
—

[4]
USA
2019

Machine-learning semi-automation for
classifying GBM, metastasis,

and CNS lymphoma.
26 X X X X MLP,

SVM 0.692
—
—
—

[34]
AUSTRIA

2022

Differentiation of glioblastoma and
brain metastases using oxygen

metabolomic radiomics and deep learning.
133 X X X X X 1D-CNN 0.91

—
—
—

[35]
CHINA

2021

Radiomic models for distinguishing
GBM from brain metastasis using

handcrafted and deep-learning features.
268 X X X X X X ML 0.97

—
—
—

[36]
JAPAN

2018

Machine learning based on multi-parametric
MRI to differentiate GBM

from primary CNS lymphoma.
70 X X X X XGBoost 0.98

0.84
0.79
—

[37]
USA
2021

Survival analysis in GBM using
post-contrast MRI and

multiple machine-learning models.
85 X X X X SVM

XGBoost 0.811
—
—
—

[38]
SPAIN
2021

Machine-learning analysis for predicting
short-term survival after surgery in GBM cases. 203 X X X X RSF 0.769

—
—
—

Note: LDA (linear discriminant analysis), SVM (support vector machine), LR (logistic regression), LASSO (least
absolute shrinkage and selection operator), RF (random forest), T1C (T1 weighted contrast enhanced omaging),
CE-T1WI (contrast-enhanced T1-weighted imaging), and AUC (area under the curve).

3. Results
The results were systematically structured into the following three sections according

to the predominant clinical focus of each study: (3.1) tumor type and grade classification,
(3.2) molecular biomarker prediction, and (3.3) comparison with clinical expert performance.
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3.1. Tumor Type and Grade Classification

In [34], significant progress was demonstrated through the application of machine-
learning techniques for cancer classification. Similarly, in [4], machine learning was em-
ployed for the semi-automatic classification of GBM, incorporating features derived from
oxygen metabolism along with convolutional neural networks to assess patients with GBM
or cerebral metastases. This approach achieved a significant improvement over traditional
radiological evaluations, documenting an area under the curve (AUC) of 0.97 for differenti-
ating these tumors. Furthermore, research referenced in [35] investigated the application
of manual feature extraction and selection to enhance predictions of disease-free survival
in various cancers, including GBM. These machine-learning models demonstrated in dis-
tinguishing GBM from brain metastases, achieving an AUC of 0.85% and a classification
precision of 0.77%.

Beyond distinguishing GBM from cerebral metastases, machine-learning techniques
have also been applied to differentiate GBM from other brain tumors. In [24], radiomic-
based machine-learning technology was used to distinguish between GBM and anaplastic
oligodendroglioma, achieving area under the curve values above 0.90%. Notably, models
based on linear discriminant analysis (LDA) reached an AUC of up to 0.994 in the test group.
Similarly, ref. [26] evaluated radiomic-based classifiers for differentiating GBM from pri-
mary central nervous system lymphoma (PCNSL), where the optimal LDA model achieved
an AUC of 0.978, demonstrating robustness in cross-validation. These findings were further
supported by [30], whose prediction model achieved an AUC of up to 0.977% by combining
multiple magnetic resonance sequences, highlighting the potential of advanced techniques
to optimize diagnostic precision in clinical settings.

3.2. Molecular Biomarker Prediction

The analysis carried out by [33] to predict the isocitrate dehydrogenase (IDH) mutation
in patients with GBM using magnetic resonance imaging, employing a convolution neural
network, showed a maximum accuracy of 77% in fluid-attenuated inversion recovery
(FLAIR) images, highlighting the potential use of these techniques in the personalization of
the treatment.

The study by [38] explored the prediction of early mortality in patients with GBM,
using a naive Bayes classifier that achieved an AUC of 0.769% and a classification precision
of 0. 80%, highlighting the ability of these tools for risk stratification. Currently, ref. [33]
evaluated feature selection methods to differentiate between GBM and cerebral metastasis,
achieving an accuracy of 0.77 and an AUC of 0.85 with the combination of least absolute
shrinkage and selection operator (LASSO) and SVM, demonstrating the effectiveness of
integrating techniques in radiomic analysis. Lastly, ref. [31] used the tree-based pipeline
optimization tool (TPOT) to train predictive algorithms, reaching an AUC of 0.988 in the
test group.

The work of [3] applied delta-radiomic characteristics derived from dynamic suscepti-
bility contrast magnetic resonance imaging to differentiate between high- and low-grade
gliomas, achieving an accuracy of 96% and an AUC of 0.94 in classification. Furthermore,
ref. [25] used a cross-validation approach to analyze MRI images, achieving an average
precision of 93.6% to classify necrosis and other critical characteristics of the tumor, em-
phasizing the utility of models based on random forests. Furthermore, the study by [30]
demonstrated how combinations of different MRI sequences, such as the apparent diffusion
coefficient (ADC), FLAIR and T1-CE, can achieve an AUC of up to 0.977, highlighting the
precision of these models in differentiating between GBM and PCNSL.

As shown in Figure 2, the distribution of sample sizes between studies revealed a high
degree of variability, with a notable outlier in 708 patients.
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Figure 2. Distribution of sample sizes in the selected studies according to the references of
the articles. The red line indicates the average sample size, with the outlier excluded (708 pa-
tients) [3,20,24–26,32–36].

3.3. Comparison with Clinical Experts

On the other hand, ref. [36] developed a model using logistic regression and extreme
gradient boosting (XGBoost) to differentiate between GBM and PCNSL, achieving a signifi-
cantly high AUC of 0.98, which exceeded certified radiologists’ evaluations. Furthermore,
the study by [20] used a support vector machine (SVM) to assess histogram and texture
parameters in MRI, achieving an AUC of 0.92, comparable to the performance of expert
radiologists, underscoring the applicability of these models in clinical practice.

Finally, recent studies have shown that the application of machine-learning models
has outperformed expert radiologists in terms of diagnostic precision. In the study by [20],
the SVM model achieved an AUC of 0.92, compared to the AUC of experts, which was
0.72, 0.73, and 0.86. Similarly, ref. [36] reported that their XGBoost model achieved an
AUC of 0.98, exceeding the AUC of expert radiologists, which was 0.84 and 0.79. These
comparative outcomes are illustrated in Figure 3.

Figure 3. Comparative AUC scores between AI algorithms and multiple human experts in can-
cer analysis [20,34].

Furthermore, the usage rates of various types of MRI signal in the reviewed studies
are presented in Figure 4.
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Figure 4. Percentage distribution of the use of different types of MRI signals in the selected studies.

4. Discussion
In line with the first group of studies, focused on tumor type and grade classification,

machine-learning models achieved high diagnostic performance in differentiating glioblas-
toma from other intracranial tumors using MRI-based data. High diagnostic performance
was consistently reported; for example, an AUC of 0.975 with 92.1% sensitivity and 94.8%
specificity was achieved when distinguishing GBM from brain metastases using radiomic
characteristics of the T1C and FLAIR sequences [24]. Another study using convolutional
neural networks reported an AUC of 0.98 when differentiating GBM from PCNSL, sur-
passing radiologists’ diagnostic accuracy (94% vs. 87%) [26]. Several other models also
achieved AUCs above 0.97 [4,36]. In general, AI models matched or outperformed expe-
rienced radiologists in precision and consistency, reinforcing their potential for clinical
application [20,34].

Regarding molecular biomarker prediction and tumor characterization, models that
incorporate CNNs and ensemble techniques such as XGBoost also produced excellent
performance metrics. ML models successfully classified GBM using radiomic features
extracted from multiparametric MRI, allowing tumor characterization and patient stratifi-
cation. CNNs and ensemble-learning techniques such as XGBoost produced AUCs ranging
from 0.92 to 0.98 to distinguish GBM from brain metastases, PCNSL, and anaplastic oligo-
dendroglioma [24,26,36]. These approaches support a clear early diagnosis and inform
personalized treatment strategies. In particular, performance was more dependent on data
quality and feature engineering than on dataset size, with studies employing dimension-
ality reduction techniques such as LASSO and PCA to improve generalizability [33,35].
In addition, some studies have extended these models toward non-invasive prediction of
molecular features, such as IDH mutation status, aligning with the WHO classification
of gliomas. These efforts demonstrate the growing role of AI in supporting molecular
diagnosis through radiogenomic correlations.

These results align with previous findings in neurooncology. Radiomic models consis-
tently reported AUCs greater than 0.97 for the classification of gliomas [24,26]. For example,
combining ADC, FLAIR, and T1C improved diagnostic accuracy to 94.3% [30], a strategy
also adopted in [36]. Contrary to earlier meta-analyses, recent studies have demonstrated
that small, well-curated datasets can yield high performance, with models trained on
fewer than 100 patients achieving AUCs greater than 0.95 [3,35]. Key contributors to these
outcomes include imaging quality, annotation consistency, and algorithm design.

Studies that directly compared AI performance with clinical experts consistently re-
ported better accuracy for AI-based approaches. The implications are both clinical and
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methodological. Clinically, AI-based models can function as decision support tools in
radiology, minimizing diagnostic delays and interobserver variability. For example, in [20],
a CNN model reached the precision 94% for the diagnosis of GBM, outperforming radi-
ologists (87%). Methodologically, the combination of multimodal imaging and radiomic
characteristics underscores the need for standardized acquisition protocols and explainabil-
ity tools to ensure interpretability. Deep-learning models applied to multiparametric MRI
predicted the IDH mutation with an AUC of 0.88 [33], while early mortality prediction in
GBM reached an AUC of 0.93 [38]. These findings support the role of AI in risk stratification
and individualized treatment planning. The consistent performance gap between AI and
human experts also highlights the need for regulatory oversight to ensure safe clinical
deployment [20,36].

Although both studies [20,36] originated from the same institution, they differ in
imaging protocols, patient cohorts, and analytical methods. Both used a 3T MAGNETOM
Trio MRI system with a 12-channel phased array coil and included DWI, T2WI, and CE-
T1WI sequences. However, ref. [36] also used DSC imaging to extract rCBV, which was not
used in [20]. The patient cohorts addressed different diagnostic tasks: ref. [36] analyzed
GBM versus PCNSL (n = 70), while ref. [20] focused on GBM versus MET (n = 126),
with partially overlapping data periods. In terms of analysis, ref. [36] applied XGBoost
with univariate logistic regression using features of multiple MRI modalities, including
perfusion, while ref. [20] used an SVM trained in texture features of conventional sequences.
Although both reported higher diagnostic accuracy for machine-learning models than
radiologists, differences in sequences, features, and classifiers limit direct comparison.
These distinctions suggest that the studies followed independent designs despite their
shared origin.

This updated synthesis of AI applications in GBM diagnosis includes various ML algo-
rithms and imaging modalities. CNNs, SVMs, logistic regression, and ensemble techniques
such as XGBoost and TPOT were used [4,20,31,36]. Many models integrated hand-made
and deep-learning features using multiparametric MRI sequences, including T1C, FLAIR,
and ADC [35]. The evaluation of the model relied on cross-validation strategies, with most
studies reporting AUCs greater than 0.90 [26,30]. Comparisons with expert radiologists
further confirmed the strong performance of AI, with reported accuracies up to 94% [20].

Despite these strengths, several limitations were observed. The sample sizes varied
substantially. For example, refs. [24,26] reported AUCs of 0.98 and 0.975 using fewer than
100 patients, while ref. [31] used a larger cohort (239 subjects) and reported a lower AUC of
0.86. These discrepancies suggest that data preprocessing, feature selection, and imaging
quality may influence performance more than sample size. Furthermore, external validation
was limited; only a minority of studies used independent test sets, restricting the assessment
of model generalizability. Finally, standardization challenges persist, including variability
in MRI protocols, feature definitions, and performance metrics, hindering reproducibility
and clinical adoption.

In line with these standardization issues, analysis of the included studies showed that
MRI images were acquired at different institutions, contributing to the heterogeneity of
the protocols. Eighty percent of the studies reported the type of scanner used, while the
remaining 20% did not report this information. Of all the selected studies, the 80% used
3 Tesla (3T) scanners, while 20% also used 1.5T scanners for image acquisition. In particular,
most of the scanners used were manufactured by Siemens Medical Systems (Erlangen,
Germany), indicating a degree of manufacturer consistency, but not necessarily uniform
acquisition protocols.

Looking ahead, future developments in AI-assisted diagnosis of GBM will likely focus
on multimodal approaches that integrate imaging with genomic and clinical data. Explain-
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able AI frameworks and federated learning are also emerging as promising strategies to
enhance model transparency, protect data privacy, and facilitate regulatory compliance,
paving the way for real-world clinical deployment.

5. Conclusions
This systematic review identified three predominant clinical applications of machine-

learning models for glioblastoma diagnosis using MRI: (1) tumor type and grade classifica-
tion, (2) molecular biomarker prediction, and (3) comparison with clinical expert perfor-
mance. AI-based models, particularly those using radiomic features and multiparametric
MRI, demonstrated high diagnostic accuracy across all reviewed studies. In classification
tasks, models achieved AUCs above 0.97 when distinguishing GBM from tumors such
as PCNSL or metastases. In biomarker prediction, convolutional neural networks and
ensemble models effectively inferred IDH mutation status and prognosis-related features.
Additionally, several models outperformed radiologists in direct comparisons, supporting
their value as clinical decision-support tools.

These findings confirm the potential of AI to enhance non-invasive GBM diagnosis,
support personalized treatment planning, and reduce interobserver variability. However,
challenges remain regarding external validation, dataset standardization, and integration
into clinical workflows. Future research should prioritize multicenter studies with stan-
dardized imaging protocols, explainable model outputs, and robust validation pipelines to
ensure safe and effective clinical implementation.
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Abbreviations
The following abbreviations are used in this manuscript:

GBM Glioblastoma multiforme
MRI Magnetic resonance imaging
AI Artificial intelligence
ML Machine learning
DL Deep learning
CNN Convolutional neural network
AUC Area under the curve
FLAIR Fluid-attenuated inversion recovery
ADC Apparent diffusion coefficient
T1WI T1-weighted imaging
T2WI T2-weighted imaging
T1C T1-weighted contrast-enhanced imaging
DWI Diffusion-weighted imaging
PCA Principal component analysis
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SVM Support vector machine
RF Random forest
LDA Linear discriminant analysis
LR Logistic regression
LASSO Least absolute shrinkage and selection operator
GBDT Gradient boosting decision tree
TPOT Tree-based pipeline optimization tool
RSF Random survival forest
PCNSL Primary central nervous system lymphoma
BM Brain metastases
MP MaxPooling
WHO World Health Organization
CE-T1WI Contrast-enhanced T1-weighted imaging
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